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Abstract

Hulton’s Theorem states that in the presence of input-output linkages, the impact
of an industry-level shock on the aggregate economy is entirely captured by the size of
this industry, regardless of its position in the network. This paper argues that the pro-
duction network structure in isolation represents an essential channel in shaping GDP
growth and growth volatility. First, I show evidence that as industries in the U.S.
economy became sparsely connected from 1970 to 2017, that is, many more industries
relied on a few central input suppliers for production, GDP growth slowed and became
more volatile. Motivated by these empirical facts, I embed input-output linkages into
a multisector real business cycle model and provide a nonlinear characterization of the
macroeconomic impact of sector-specific productivity shocks to highlight the key role
of production network structures. Finally, I measure realized sector-level productivity
shocks from the data, feed them into the model, and study model-implied relation-
ships between production network structure, GDP growth, and growth volatility. Our
calibrated model is able to explain about 20% of the business cycle fluctuations as
observed in the data. Moreover, our results imply that network connections matter
beyond industry sizes.
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1 Introduction

In the modern economy, the production of any good or service always needs cooperation
among a wide range of industries or firms. Industries buy goods and services from differ-
ent suppliers to produce and sell their products to various consumers, which then form a
particular structure of an input-output network or a production network.! Based on this
network view of the production process, shocks to any industry or firm can spread to its
neighbors, sectors directly connected to it, its neighbors’ neighbors, and so forth via input-
output linkages. For example, in September 2021, a record number of cargo ships were stuck
at the port of Los Angeles and waited to unload due to a shortage of trucks and drivers. In
this example, not only was the transportation sector affected, but many other sectors waited
for this cargo for production, such as apparel manufacturing and wholesale trade, as well
as their consumers. As a result, industry-level distortions will be propagated and amplified
through the production network and cause aggregate fluctuations. However, what is the role
of the production network structure in explaining an economy’s aggregate outcomes?

This paper puts forth the idea that the production network structure in isolation repre-
sents an essential channel in shaping GDP growth and growth volatility in the United States.
I make this argument in three steps. First, I develop a new measure of production network
structure, named centrality dispersion, and show that industries in the U.S. economy have
become sparsely connected from 1970 to 2017, that is, a few highly central input supplier
industries combined with an isolated group of less important industries. With such changes
in the network structure, I observe that aggregate GDP growth tended to slow down and
became more volatile. Second, I embed inter-sectoral linkages into a constant elasticity of
substitution (CES) multisector real business cycle model and study the nonlinear impact
of industry-specific productivity shocks on the aggregate economy. In this theoretical envi-
ronment, the production network structure (or centrality dispersion) plays a key role in the
propagation and amplification of sectoral shocks. Finally, I construct realized sectoral pro-
ductivity shocks from the data, feed them into the model, and study quantitative predictions
of the model regarding the empirical correlations between input-output network structures,
GDP growth, and growth volatility. The calibrated model can deliver the observed empirical
patterns in the U.S. economy moderately well, while a Cobb-Douglas model fails to deliver.

In the first step, this paper reveals the changing nature of the U.S. input-output network
structure and provides empirical evidence of a significant correlation between the network
structure and GDP growth and growth volatility, respectively. Specifically, I first use the

summary-level input-output data from the Bureau of Economic Analysis (BEA) to construct

!Throughout this paper, I use terms “production network” and “input-output network” interchangeably.



annual input-output tables of the U.S. economy over the 1970—2017 period. Each input-
output table captures the flows of intermediate inputs from a supplying industry to its
consumer industries. Next, I develop a new measure of production network structure named
centrality dispersion, describing the extent to which an economy has a group of important
input suppliers, and identify a gradually sparsely connected network structure of the U.S.
economy across the years. For example, a few industries, such as “Finance and insurance”
and “Professional services”, have become more central suppliers within the network, meaning
many more industries rely on their services to produce, while other industries, like “Paper
products” and “Mining”, have become more isolated. Last, I study the empirical relationship
between changes in the network structure and aggregate fluctuations. The evidence shows
that as the U.S. input-output network structure becomes sparsely connected over time,
aggregate GDP growth tends to slow down and be more volatile.

Motivated by these empirical observations, in the second step, I build a multisector real
business cycle model embedded with intersectoral linkages to understand the role of the
production network structure in propagating industry-specific productivity shocks. In our
model, each industry produces a distinct product using labor and a bundle of intermediate
inputs purchased from other industries. All the inputs are aggregated by a CES produc-
tion function, which characterizes the empirical input-output network. Hulten’s theorem
states that, in an efficient economy, Domar weights, defined as an industry’s total sales to
aggregate GDP ratio, are sufficient statistics in explaining the impact of sector-specific pro-
ductivity shocks on GDP (see 7, 7, 7, and among others). In other words, in the presence
of input-output linkages, the impact of a sector-level shock on the aggregate economy is en-
tirely captured by the size of this sector, regardless of its position in a production network.
Therefore, in order to highlight the importance of production network structure in propa-
gating shocks and shaping macroeconomic outcomes, I provide a nonlinear approximation
of sectoral productivity shocks” impact on GDP, as in 7 and ?.

The final step of our analysis is to use the calibrated model to perform several quantitative
exercises assessing the role of input-output network structure in shaping GDP growth and
growth volatility under nonlinear characterization. In the first exercise, I measure the realized
industry-specific productivity shocks from the data using the Solow residual approach, feed
them into the model, and study the quantitative predictions of the model regarding the
empirical correlations between the input-output network structure and two macroeconomic
aggregates. Overall, our model is able to deliver the observed empirical patterns moderately
well, while a Cobb-Douglas model fails to deliver. In particular, our model implies that a

more sparsely connected network structure is associated with lower GDP growth and higher



growth volatility. Nevertheless, the model-estimated key coefficients? are about one-quarter
as big as those observed in the data. To ensure the changes in GDP growth and growth
volatility are not purely driven by variations in industry sizes, in the second exercise, I build
two three-sector economies with identical Domar weights but different inter-sectoral linkages
to disentangle the contribution of network interconnections. In the last exercise, I use our
model to estimate the impact of the Covid-19 shocks, measured as the reduction in sectoral
labor supply from March 2020 to June 2020, on the real economy. Our model predicts a
roughly 10.5% reduction in real GDP, which is in line with the data in the second quarter
of 2020 from the BEA.

The rest of the paper is organized as follows. In section 2, I review three strands of
related literature and present the contributions of this paper. In section 3, I first measure
the empirical input-output production network of the United States spanning the 1970—2017
period and document several stylized facts about the network structure. Then I show evi-
dence that the changing network structure significantly correlates with the U.S. economy’s
aggregate performance. Motivated by these empirical observations, in section 4, I incorpo-
rate inter-sectoral linkages into a multisector real business cycle model to study the role of
network structure in propagating and amplifying sectoral productivity shocks under nonlin-
ear characterization. In section 5, I use the calibrated model to perform several quantitative

exercises. Section 6 concludes.

2 Literature Review

This paper relates to several strands of literature that study: i) the origin of macroeconomic
fluctuations, ii) the role of an input-output network in propagating idiosyncratic shocks into
the aggregate economy, and iii) how structural transformation determines economic growth.

In the branch of theoretical literature that studies the network origin of macroeconomic
fluctuations, the canonical work of 7 and ? point out that aggregate volatility is the pri-
marily result of microeconomic shocks propagating through input-output networks; also see
7,7, 7, 7 and 7. At the firm level, 7 and ? show that fundamental volatility, defined
as the weighted® sum of firm-level idiosyncratic shocks, is able to track the volatility of
macroeconomic variables over time. As with the existence of large firms, the impact of firm-
level total factor productivity (TFP) shocks will not be canceled out, resulting in aggregate

fluctuations. At the industry level, 7 argue that idiosyncratic shocks to important input

2Key coefficients refer to the estimated coefficients of model-implied centrality dispersion and concentra-
tion centrality, respectively.
3Following Hulten’s theorem, weights are the Domar weights of selected large firms in the U.S. economy.



suppliers (industries) propagate more widely through the input-output network, thus do not
wash out with shocks to small sectors, generating sizeable aggregate movements. Moreover,
? generalizes ?’s theoretical framework from a Cobb-Douglas economy to accommodate flex-
ible substitution patterns in production functions and quantifies the contribution of sectoral
and aggregate shocks to business cycle fluctuations. Both papers conclude that the inter-
play of idiosyncratic shocks and the input-output network can account for at least half of
the aggregate volatility. Sharing the spirit of previously mentioned papers, I study the im-
pact of industry-specific productivity shocks on macroeconomic aggregates when propagating
through different input-output networks.

My paper also contributes to a growing literature on assessing the role of an input-output
network in shaping macroeconomic fluctuations with a multisector real business cycle model
initiated by ?. 7 employ this framework with Cobb-Douglas technologies and argue that
in a linear economy, Domar weights are sufficient statistics in determining an economy’s
aggregate performance, not the intricate details of the network. Nevertheless, ? incorporate
CES production functions and preferences into a multisector model and provide a nonlinear
characterization of the impact of sectoral productivity shocks on the aggregate economy. The
authors emphasize that in the presence of nonlinearity, network linkages do matter. 7 also
clarify how network interactions function as a mechanism for propagating and amplifying
microeconomic shocks by providing the first- and second-order approximation of the structure
of equilibrium. Other papers (see 7, 7, 7, and ?7) explore the role of an input-output network
in an inefficient economy and illustrate that market imperfections, for example, misallocation
of resources, sectoral mark-ups, financial distortions, etc., can accumulate through the input-
output network, causing systematic influences.

More broadly, my paper adds to the empirical literature on the relationship between
structural change and economic growth. For example, 7 develop a model with endogenized
technological diversification and show that firms in rich economies tend to use a larger variety
of inputs, which mitigate their exposure to productivity shocks and thus reduce aggregate
volatility. 7 document the fact that the service sales to GDP ratio increases with income
across countries and develop a multisector growth model to account for it. ? and ? provide
cross-country evidence that high-income countries, or the countries that have experienced an
increase in the share of services in GDP over time, tend to grow slower and be less volatile
than middle-income ones. Moreover, Moro constructs a two-sector general equilibrium model
to study the impact of structural change on cross-country differences in GDP growth and
volatility. More recently, 7 shows that GDP growth volatility declines with production
network diversification—as measured by the fraction of input-output connections within a

network.



Compared to the aforementioned papers, my paper’s contributions are as follows. First,
from an empirical standpoint, I develop a new measure of production network structure,
centrality dispersion, to describe the extent to which an economy consists of a group of star
sectors. I show that the production network structure is significantly associated with the
economic growth and volatility of the United States, complementing ?’s work. Moreover,
I generalize 7 and ?’s theoretical results and show that centrality dispersion (our network
structure measure) play an essential role in explaining the impact of sector-specific productiv-
ity shocks on the aggregate economy up to the second-order approximation. Last, I construct
two three-sector economies with identical Domar weights to disentangle the contribution of

network linkages in determining GDP growth and growth volatility.

3 Data and Stylized Facts

In this section, I study the empirical relationship between the production network structure
of the U.S. economy and real GDP growth and growth volatility, respectively. I start by
describing the data and then document several empirical facts to reveal the changing nature
of the U.S. production network structure from 1970 to 2017. Last, I estimate the correla-
tion between the network structure and the economy’s aggregate performance with panel

regressions.

3.1 Data

To map the U.S. production network to data, I use the summary-level input-output data

from the BEA, which measures the input transactions among the 46 U.S. industries*®

over a
long time span at an annual frequency. Table 1 lists the 46 industries included in our analysis.
In particular, I first combine the BEA’s Make and Use tables® to derive the Commodity-by-
Commodity Direct Requirements (CCDR) table for each year over the 1970—2017 period.

Each nonzero entry (i, j) in the CCDR table denotes a flow of inputs from a supplying indus-

4This paper only focuses on the flow of inputs between the U.S. industries, ignoring input trading with
the rest of the world.

®The 46 industries in the sample were classified according to the North American Industry Classification
System (NAICS) in 1947. However, in 1963 and 1997, the BEA revised the data collection mechanism and
reclassified the economy into 65 and 71 industries, respectively. Therefore, I aggregate several industries
back into the original 46-industry definitions to ensure consistency in measurement, see details in ?.

6The Make and Use tables used to construct CCDR. tables are collected before redefinitions of secondary
products. A redefinition is a transfer of a secondary product from the industry that produced it to the
industry in which it is primary, as described in ?. Thus, for example, the output and associated inputs
for restaurants located in hotels are moved from the hotels and lodging places industry to the eating and
drinking places industry.



Table 1: The 46 Industries Used in the Analysis.

Farms Petroleum and coal products

Forestry, fishing, and related activities Chemical products

Oil and gas extraction Plastics and rubber

Mining, except oil and gas Wholesale trade

Support activities for mining Retail trade

Utilities Transportation and warehousing
Construction Information

Wood products Finance and Insurance

Nonmetallic mineral products Real estate

Primary metals Rental and leasing services

Fabricated metal products Professional, scientific, and technical services
Machinery Management of companies and enterprises
Computer and electronic products Administrative and waste management services
Electrical equipment, and components Educational services

Motor vehicles, bodies and trailers Health care and social services

Other transportation equipment Arts, entertainment, and recreation
Furniture and related products Accommodation

Miscellaneous manufacturing Food services and drinking places

Food and beverage and tobacco products Other services, except government

Textile mills and textile product mills Federal general government

Apparel and leather and allied products  Federal government enterprise

Paper products State and local general government
Printing and related support activities State and local government enterprise

try ¢ to a demanding industry j within the network, while zero means no input transactions.
Then I normalize all column industries j to sum to one, as j’s total intermediate input ex-
penditures must be allocated to all (or at least some) industries in the economy. Therefore,
the entry (i,7) in our final table implies the value of spending on good i per dollar of the
production of good j, and I refer to the final table as the empirical input-output network. In
addition, the sum of values in rows ¢, presented as total purchases of good i in shares of the
demanding industry, captures sector i’s importance as an input supplier in the production

network.

Figure 1 illustrates the U.S. empirical input-output network structure in 1970 (top panel)
and 2017 (bottom panel) with heatmaps. Each row represents an industry supplying interme-
diate inputs for production to the others, while each column represents industries demanding
the inputs. I report each small rectangle in the heatmap as industries’ intermediate input
purchases from each supplier as a fraction of their total input expenditures. White (cool)

colors denote small shares, and bright colors denote large shares. As shown in the figure, a



Figure 1: The U.S. Input-Output Network in 1970 (top) and 2017 (bottom)
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Note: Heatmaps of empirical input-output networks. Entry (i,j) computes the share of total intermediate
input expenditure in sector j that is purchased from sector i.

few industries, such as “Wholesale trade (row 27)” and “Professional, scientific, and tech-
nical services (row 34)”, became more central suppliers in 2017 as they were connected to
many more industries. This is represented by more blue dots in a row. In contrast, other

industries like “Utilities” became more isolated within the network.



3.2 The Changing Input-Output Network Structure of the U.S.

Economy

3.2.1 A Small World of Input Flows: Distance and Diameter

According to 7, a small-world network is a type of network in which most nodes are not
neighbors of one another but where most nodes can be reached from every other by a small
number of hops or steps. If so, when shocks hit a sector in such a network, especially a star
supplier, the impact would fast propagate to its neighbors, then to the rest of the economy;,
generating aggregate fluctuations.

To identify such features, I measure the distance and diameter of the U.S. input-output
network over time. Define network diameter as the maximum length of all ordered entries
(7,7) of the shortest path from i to j and average distance as the average length of the
shortest path for all entries (i,7). Over the 1970—2017 period, the diameter and average
distance of the U.S. production network have a mean of four and two, respectively.” When
the U.S. economy is categorized into 46 industries, it takes two steps on average for one
industry to reach any other industry within the network, which implies a small world of
production networks. In other words, industries with indirect demand-supply relationships
are highly likely to link through a few star input suppliers as they shorten the distance

between industries.

3.2.2 A Measure of Network Interconnection: Density

Network density measures the degree of inter-industrial connections within a network. In line
with ?, an economy with N industries has a network density of L/N?, where N? indicates the
number of all possible links, and L is the number of existing links. This measure ranges from 0
to 1, with the lower limit corresponding to an economy with completely isolated sectors, while
the upper limit refers to the network with all possible sectoral interconnections. Moreover,
network density can vary over time, as inter-sectoral linkages might emerge or vanish due to
changes in suppliers’ productivity, international competition, consumers’ preferences, etc.
Figure 2 plots the network density of the United States from 1970 to 2017 with 46
industries. I assume a link exists between industry ¢ and j if i’s supply of good ¢ can account
for at least one percent of j’s total input expenditures. In our analysis, the average network
density is 0.239, implying that 506 out of 2,116 possible linkages® existed in any given year.
However, even with such a highly disaggregated industry classification, the number of links

varies over time. The network density has a standard deviation of is 0.0086, which is roughly

"The standard deviation of network diameter and distance are 0.03 and 0.4, respectively.
8Since I choose the 46-industry classification in the analysis, the number of all potential links is N? = 2116.



Figure 2: Network Density of the U.S. Economy from 1970 to 2017.
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Note: Shaded areas refer to the National Bureau of Economic Research (NBER) defined recessions in the
United States.

18 links. Therefore, although the degree of network interconnection has varied over time,
the variation is relatively small.

As shown in Figure 2, network density trended up until early 2000, indicating industries
have become more interconnected during that period, but it started to decline afterward.
One possible reason might lie in the rapid growth of international trade since the 1980s,
especially with Asian countries. The easier accessibility and comparative advantage of pro-
ducing in Asian countries have boosted U.S. firms’ offshoring activities, making them less
connected with domestic trade partners. Moreover, the network density tended to decline
during economic recessions. Intuitively, firms or industries tend to reduce production during

economic downturns and thus become less connected with others.

3.2.3 A Measure of an Industry’s Relative Importance within the Network:
Katz—Bonacich Centrality

The Katz-Bonacich (KB for short) centrality is one way of measuring an industry’s relative
importance as an input supplier in a production network. It takes into account both direct
and indirect (higher-order) connections between industries, as well as the strength of these
connections. In general, industries are considered more central (a higher centrality) if their
neighbors are well-connected industries.

Define the KB centrality Centrality ;) of an industry j as proportional to the weighted

10



sum of its neighbors’ centralities, which is given by

N
Centrality;) = p Z wy;Centralityq + 1,
i=1

where N = 46 is the number of industries defined in my sample, and w;; corresponds to the
(1, 7) element of an empirical input-output matrix W as described in section 3.1, representing
the expenditure on input ¢ per dollar of the production of good j. u is the baseline centrality
level that is identical across industries, and n > 0 is an attenuation factor. Recall the KB
centrality captures both direct and indirect inter-sectoral connections within the network.
A longer distance, say more than a one-edge distance between industries ¢ and j, will be
penalized through the attenuation factor p (7). An industry’s centrality can range from 0
to 1 and sum up to one over all industries in a given year. A higher centrality implies this
sector is a more important input supplier in the network and more influential over the entire
economy. For instance, an industry with a centrality of 0.2 has twice as much influence as a
0.1—centrality industry.

Rewriting the previous equation into the matrix form, we have
U= nl— W],

where ¥ denotes a N x N industry centrality matrix, and I is the identity matrix. Each
element U = [¢);;] measures sector ¢’s total reliance on its input supplier j, which is propor-
tional to the Leontief inverse elements. Therefore, the centrality of j is computed as the sum
of the jth column Centrrality ;) = Zf;l ;. Last, following 7, I set the attenuate factor
w=0.5,and n=(1—pu)/N.

Using the above equation, I calculate each industry’s centrality from 1970 to 2017. Figure
3 highlights four industries that increased in centrality over the past fifty years. They are
“Finance and insurance”, “Real estate”, “Professional, scientific, and technical services”, and
“Administrative and waste management services.”” An industry with increasing centrality
means that many more sectors, directly and indirectly, rely on it for their own production
process. For example, “Professional, scientific, and technical services (yellow line)” (PST
services for short) and “Administrative and waste management services (purple line)” ex-
hibited a more than 50% increase in centrality since 1970. One possible explanation for such
increases is outsourcing. Rather than hiring accountants, statisticians, or cleaning persons

to produce in-house, more firms or industries were increasingly contracting out these jobs

91 choose these four industries as they experienced the largest rise in centrality across all industries over
the sample period.
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Figure 3: Selected Industries that Increased in Centrality.
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to specialized companies, thus making them more central over time (?). Imagine the same
adverse shock hitting “PST services” in 1970 and 2010 separately. It will have a more dev-
astating impact on 2010’s economy as “PST services” has become a more influential input
supplier.

On the other hand, “Finance and insurance (blue line)” and “Real estate (red line)” in
Figure 3 present similar periodic patterns throughout the sample, despite their centralities
being different in magnitude. In particular, two sectors experienced a sharp increase in
centrality level from the mid-1990s to 2005, which coincided with the U.S. real estate boom.
The continuous growth in housing demand had boomed financial and real estate-related
services, making the two industries more central in the economy. However, their centralities
started declining around 2007, possibly due to the 2008-2010 financial crisis.

In contrast, Figure 4 depicts four selected industries with no substantial gains in central-

7 experienced

ity. For example, “Primary metal (blue line)” and “Paper products (red line)
a declining centrality over time.'® Since the 1980s, the U.S. government has started im-
posing stringent environmental regulations on manufacturing industries. As a result, it
largely increased firms’ production costs as old equipment needed to be replaced by new
environment-friendly ones (7). Meanwhile, foreign companies entered the U.S. market with
cheaper imports. Both situations weakened the competitiveness of domestic manufacturers
(?) and thus reduced their centralities. In addition, the centrality of “Oil and gas extraction
(yellow line)” and “Petroleum and coal products (purple line)” peaked in the early 1980s

and late 2000s but maintained a similar level at the beginning and the end of the sample

10Tn my analysis, the majority of industries that experienced a declining centrality belong to manufacturing.
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Figure 4: Selected Industries that Did Not Increase in Centrality.
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Figure 5: Centrality Std.D , 1970—2017.
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period.

3.2.4 A Measure of Network Structure: Centrality Dispersion

In this paper, I use centrality dispersion to characterize the production network structure
of the U.S. economy, which is defined as the unweighted cross-sectional standard deviation
of the KB centrality in a given year. This measure is closely related to what ? has found
theoretically, which characterizes how sectoral productivity shocks amplify and propagate

through inter-sectoral linkages and lead to (second-order) aggregate impact. Centrality dis-
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Figure 6: Fitted GEV Distribution of Centrality in Five Selected Years.
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persion describes the extent to which an economy contains a group of star intermediate input
suppliers. Thus, a more dispersive production network structure (or a larger standard de-
viation of centrality) implies an economy consisting of a few highly central industries. And
such an economy could be more vulnerable to shocks. Because shocks to a sector, especially
a star supplier, would propagate to more sectors via network linkages, then generate greater
aggregate volatility.

Figure 5 plots the centrality dispersion (the standard deviation of the KB centrality)
spanning 1970 to 2017. The increasing trend in the figure indicates that industry centrality
has spread further from the mean, leaving (both right and left) tails of centrality distribution
fatter over the years. A fatter right tail implies an economy with more central input suppliers.
That is to say, over time, many more industries relied on these star suppliers for their own
production process. Analogously, a heavier left tail suggests that relatively unimportant
industries (or low-centrality industries) have maintained a weak interconnection with most
other industries throughout the sample period. The coexistence of a few highly central
industries and an isolated group of less central industries identifies the U.S. economy as a
gradually sparsely connected production network. Last, in Figure 6, I plot the centrality
distribution!! in 1972, 1982, 1992, 2002, and 2012 to provide a clear vision of how the U.S.
production network structure has changed over time.

In Appendix A, I will provide an alternative measure of production network structure,

concentration centrality, and show its significant correlations with GDP growth and volatility.

HSince I only have 46 centralities each year, I plot the generalized extreme value (GEV) distribution that
best fits the limited data.
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3.3 Input-Output Network Structure and Aggregate Fluctuations

In this subsection, I will show empirical evidence of how input-output network structure
shapes aggregate fluctuations in the United States from 1970 to 2017. In particular, I
examine the conditional correlation between centrality dispersion, the production network
structure measure described in Section 3.2.4, and real GDP growth and growth volatility,

respectively.

3.3.1 Centrality Dispersion and real GDP Growth

First, I estimate the relationship between centrality dispersion, specified as the unweighted
cross-sectional standard deviation of the KB centrality, and aggregate real GDP growth using

the following regression:

Alog(RGDPr) = pilog(Std.centralityr) + X/T% +er (1)

where Alog(RGD Pr) denotes real GDP growth in year T', measured by the first difference of
annual real GDP in logarithm. The key regressor Std.centralityr stands for centrality disper-
sion, which describes year T’s network structure. The vector X contains control variables
(in logarithm) used in the literature: service'? sales share in GDP (?), log(Serv./GDPr),
and intermediate input sales to gross output ratio (?), log(Int.m/outputr). 1 also include
log(Int.m/outputr)?, denoted as the squared input sales ratio, to capture the potential non-

linearity in explaining output growth.

Observation 1 As industries in the U.S. economy become sparsely connected over time,

aggregate real GDP growth tends to slow down.

Table 2 illustrates the results of estimating equation (1), which indicates a strong negative
correlation between centrality dispersion and real GDP growth. As the production network
structure becomes sparser across years, that is, a few highly central supplier industries
combined with an isolated group of less important industries, GDP growth tends to slow
down. To have an idea of the economic significance of the coefficient in the first column
of Table 2, for a one-standard-deviation increase in centrality dispersion, real GDP growth
rate declines by about 0.007 on average. The intuition underlying this negative coefficient is

that, on the one hand, most service-related industries in the United States were becoming

1291 out of 46 industries are selected to be the members of the broad service sector, including Utility,
sixteen private service-producing industries, and four government-related industries.
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Table 2: Real GDP Growth and Centrality Dispersion, 1970—2017.

o) ) ©)
Variables Alog(RGDPr) Alog(RGDPr) Alog(RGDPr)
log(Std.centralityr) -0.798*** -0.8617*+* -0.8317%**
(0.299) (0.280) (0.300)
log(Int.m/outputr) -0.423%+* -0.703**
(0.156) (0.353)
log(Int.m/outputr)? -27.378%4* —29.741*%*
(4.587) (4.321)
log(Serv./GDPr) -0.663* -0.791*
(0.396) (0.485)
log(H HI7r) 1.772
(2.311)
R-squared 0.157 0.497 0.511
Observations 48 48 48

! This table presents the OLS regression results, using real GDP growth rate as the
dependent variable. All variables except real GDP growth are HP-filtered with a
smoothing parameter of 6.25.

2#xk < 0.01, **p < 0.05, *p < 0.1, and robust standard errors are in the paren-
theses.

more central suppliers. However, on the other hand, these service sectors tend to have low
productivity growth to grow over time,'® thus causing an economic slowdown. Also shown
in column (2), results are robust when including the aforementioned control variables.
Last, I add an additional regressor, the Herfindahl-Hirschman index (HHI) of sectoral
sales shares log(HHIz) (7),'* and re-estimate the correlation. As shown in column (3), the
relationship between centrality dispersion and real GDP growth holds even after controlling
for the HHI of sectoral sales shares. This result suggests that network structure affects
real GDP growth beyond sectoral sales shares. In other words, sectoral interconnection in
isolation can account for aggregate economic growth. Our empirical evidence complements
?’s theoretical findings that Domar weights (sectoral sales shares) are insufficient statistics for
characterizing the nonlinear impact of sectoral productivity shocks on economic outcomes.
Nevertheless, there is a potential reverse causality problem as aggregate GDP growth
might reversely affect how sectors trade with one another. Regarding this issue, I conduct
the Granger causality test, and the results suggest that reverse causality should not be a

primary concern here.

13In Appendix B.1, I show empirical evidence of a negative correlation between an industry’s centrality
and sectoral real output growth over my sample period, which is similar to ?’s finding.

For each period T, I calculate HH I = Zil(G%‘;T )2, where S; 1 are sector i’s total sales at time 7.
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Table 3: Real GDP Growth Volatility and Centrality Dispersion, 1970—2017.

M @) ®
Variables Growth volatilityr  Growth volatilityr  Growth volatilityr
log(Std.centralityr) 0.370** 0.397** 0.440**
(0.200) (0.210) (0.126)
log(Serv./GDPr) 0.345 0.537%*
(0.271) (0.205)
log(Std.domary) -0.355
(0.330)
Growth volatilityr_q -0.319%* -0.292** 0.350***
(0.148) (0.132) (0.122)
R-squared 0.176 0.217 0.250
Observations 48 48 48

! This table presents the coefficients of estimating equation (2), using the standard deviation of
real GDP growth as the dependent variable.

2 All variables have been HP-filtered with a smoothing parameter of 6.25.

3% p < 0.01, **p < 0.05, *p < 0.1, and robust standard errors are in the parentheses.

3.3.2 Centrality Dispersion and Growth Volatility

Next, I estimate the relationship between centrality dispersion and macroeconomic volatility

using the equation below:
Growth volatilityr = poGrowth volatilityr—; + [olog(Std.centralityr) + X;”yg +eér (2)

where Growth volatilityr denotes the standard deviation of real GDP growth at time 7',
as in 7 and 7, which is referred to as growth volatility. Std.centralityr still represents
our production network structure measure, which is the centrality dispersion in period 7.
Three control variables in X are the one-period lag of growth volatility Growth volatility_1,
service sales over GDP ratio log(Serv./GDPr) and the standard deviation of Domar weights
log(Std.domarr). Recall that Domar weight is defined as an industry’s total sales to the

economy’s GDP ratio.

Observation 2 As the U.S. input-output network structure becomes sparser over time, ag-

gregate real GDP growth tends to be more volatile.

Table 3 presents the results of estimating equation (2). There is a strong positive cor-
relation between the production network structure and real GDP growth volatility over the

sample period. The coefficient in column (1) indicates that a 1% increase in centrality
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dispersion is associated with a 0.37% increase in aggregate volatility. It also implies that
a one-standard-deviation increase in centrality dispersion rises growth volatility by about
0.004. Intuitively, shocks hitting central supplier industries do not wash out with shocks to
less important industries. Therefore, shocks to a more dispersive network structure will have
a more disproportionate impact on the macroeconomy, thus making it more volatile.

The results are robust when adding previously mentioned control variables. In particu-
lar, I re-estimate the equation conditional on the standard deviation of sectoral sales shares,
log(Std.domarr), to control for potential variations caused by Domar weights. The signif-
icant coefficient in column (3) suggests that even in the absence of sectoral sales shares,
production network structure is still strongly correlated with aggregate volatility, which
empirically accentuates the role of intersectoral linkages in determining macroeconomic fluc-

tuations.

4 Theoretical Framework

Motivated by the stylized facts, I develop a theoretical framework by embedding intersec-
toral linkages into a multisector real business cycle model with CES technologies, as in ?
and ?. Moreover, I solve the model nonlinearly in order to highlight the role of production
network structure (centrality dispersion) in propagating and amplifying industry-level pro-
ductivity shocks to the macroeconomy. Throughout this section, variables with overlines are

normalizing constants equal to their steady-state values.!?

4.1 A Model of Input-Output Networks
Firms’ Productions

In our economy, time is discrete and infinite. There are N = 46 competitive industries. Each
industry i € {1,2, ..., N} produces a distinct good with a single factor of production (labor)

and an intermediate input bundle within one CES nest. The production function is given by
ey —1 ey —1

_fY
i L\ = Xit\ v o
B [ (L—) (1= a) ( N ) } )

where y;; denotes industry ¢’s output, and L; is the amount of labor used by i at time 7.

Note that an industry’s total output will be sold either to other industries as intermediate

inputs for production or to households as final consumption goods. Xj;; indicates a bundle of

15Since this paper focuses on percentage changes in GDP, the normalizing constants are irrelevant.
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intermediate inputs purchased from other industries and used for production. The elasticity
of substitution parameter £y measures how easily factors of production (that is, labor and
intermediate inputs) are substituted, and I assume it is identical across industries. Parameter
a;; reflects industry 4’s usage of labor in the total value of production. Last, I assume that

industry-specific TFP A;; follows a random walk:
log Ay = logAi—1 + Kit (4)

where sectoral productivity shocks k;; are lognormally distributed.
The intermediate input bundle X;; consists of industry i’s purchases of intermediate

inputs from other sectors for production, aggregated through an input-output network:

N —1 5
Xit ( (ﬂfijt) =X >axl
— = ’YZ — 5
Xit 2; ! Lijt ©)

where z;;; is the inputs purchased by industry ¢ from its supplier j in year t. The N x N

matrix I' = [;;] sumerizes the input-output linkages between various industries, and we refer
to as the input-output network structure of the economy. I also assume the constant returns
to scale technology of firms in sector ¢ such that Z;VZI 7i; = 1. The elasticity of substitution
€x parameterizes the substitutability across intermediate inputs demanded by sector ¢ and
is set to be identical across industries.

Following ?, T allow for two types of labor'® in the model: specific labor I;,, ; and general
labor ;. Whereas the specific labor can only work in sector ¢, general labor can move
across sectors flexibly without any transaction cost. Total labor demanded in industry ’s
production L; is organized as

3 lisi, i ZZ y —Pi
Lit ( t)ﬁ( gt)l 57 (6)

lisi,t lig,t

where the two types of labor are in fixed supplies, such that lfsht = l;-si,t and lfgyt = Zfil lfigyt.

Parameter (3; denotes the portion of specific labor in total labor used by industry . As a
result, 8; = 1 means the economy only consists of specific labor, which cannot be reallocated

to other sectors, while with ; = 0, all labor can move flexibly within the network.

162 argue that the degree of factor (labor) reallocation can affect sectoral TFP shocks’ impact on the
aggregate economy when characterizing the model nonlinearly.
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Household’s Preferences

The representative household maximizes utility over leisure and N different final consumption

goods (or services)
erst+1l

ELS =
U(C, Lgt) = Cy — L*"* 7
( ty St) t €LS+1 St ( )
subject to the budget constraint
N
wiLg + Z"Tit =P..Cy (8)

=1

where C; represents the household’s aggregate consumption bundle at time ¢, consisting of
different final goods ¢;; and Lg; is the total labor supply to all sectors. In the household
budget constraint, w; is wage, m;; is the profit in sector ¢ (m;; = 0 for each i at the equilibrium),
and P, represents the associated ideal price index of the consumption bundle C}, assumed
to be a numeraire. The Frisch elasticity of labor supply €55 > 0 describes the sensitivity of
household’s desired labor supply to a given wage rate.

Moreover, the household’s aggregate consumption function is constructed as

Ct_ N ) Cit 5(5;51 5276;1 9
G- (X)) 9)

— Cit
1=

where parameter b; illustrates the consumption share of good i, which satisfies Zf\il b; = 1.

The elasticity of substitution among different consumption goods is denoted as e¢.

Competitive Equilibrium

I characterize the competitive equilibrium of our multisector CES economy using the social
planner’s problem. For each industry ¢, goods market clearing ensures that ¢’s output is used
for final consumption or intermediate inputs for production: y; = ¢; + Zjvzl xji. Recall
that labors are in fixed supplies, so the market-clearing conditions for the specific labor and

the general labor are l_si,t = l;s,+ and l_gyt = Zf\; lig -

Solution Method

I solve the model nonlinearly in order to characterize the second-order impact of sectoral
TFP shocks on the aggregate economy, as in 7 and ?. The advantage of our characterization
is to highlight the key role of inter-sectoral linkages or the network structure in determining

shocks’ effect on aggregate GDP growth and growth volatility. First-order conditions of the
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social planner’s problem is provided in the Appendix C.

4.2 Network Propagation Mechanism

In this subsection, I study the model’s implications for the relationship between the network
structure and GDP growth.
First, the second-order approximation of aggregate real GDP with respect to productivity

shocks to several industries ¢ and 7 is:

| Yy al d logY
BF T 2. qlogA,

1OgAZ

=1

N N
1 d? logY

2 logA;log A
+2;;dlogAidlogAj(og i10g ])7

(10)

where Y represents aggregate real GDP, and Y denotes the steady-state value of Y. A;
are industry-specific productivity shocks to industry ¢. In particular, the first line of equa-
tion (10) shows shocks’ first-order (linear) impact on aggregate GDP, while the second line

captures shocks’ second-order (nonlinear) impact.

Definition 1 Define I' = [;;] as the N x N model-implied input-output matriz, the model-
implied centrality matrix is
O = p[I— ], (11)

where each element in the centrality matriz ® = [¢;;] describes sector i’s direct and indirect

reltance on 7 as an input supplier. Thus, the model-implied centrality of sector j is given by

Proposition 1 The first-order effect of an industry-specific productivity shock A; on aggre-
gate GDP s given by

d logY
= iy 12
d logA; (12)
where \; = £&%5 denotes Domar weights, that is, industry i’s total sales to GDP ratio.

Assume that n = p = 1,17 and the elasticity of substitution of intermediate inputs €x

1s common across all industries. I specify the second-order approrimation of aggregate real

"When 1 = p = 1, the model-implied centrality matrix is essentially the model-implied Leontief inverse
matrix ® = [I — F]_l.
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GDP as

N N
1 . 5
_ 5(5)( - 1) E 5 CentralityCentrality ;logA;logA;.

Proof: See Appendix D.

Proposition 1 generalizes 7 and ?’s results by building a connection between centrality
dispersion (our network structure measure) and aggregate GDP. Consistent with Hulton’s
theorem, the first line of equation (13) implies that Domar weights A, sector k’s sales to
GDP ratio, are sufficient statistics in determining the impact of microeconomic shocks on
GDP up to the first-order approximation.

However, Hulton’s theorem no longer holds when considering shocks’ nonlinear (high-
order) effect. The last two lines of equation (13) exhibits the second-order impact of sector-
level productivity shocks on GDP. On the one hand, when i = j, Zf\il A¢% in the second line
is closely related to our concentration centrality measure, which describes the variation in the
extent to which industry ¢ influences other industries within the network. In other words, how
evenly an industry’s impact is distributed across its consumers within the network. On the
other hand, the last line of equation (13) implies that the variance of industry centrality plays
a key role in determining aggregate GDP. When ¢ = j, ZZJ\LI Cent}ality?i) is essentially our
empirical network structure measure of centrality dispersion. For example, consider the effect
of a negative productivity shock d logA; < 0 only on sector i. If ex < 1, a greater centrality
dispersion leads to a smaller second-order approximation, and thus a smaller negative impact
on aggregate GDP, ceteris paribus. In other words, a more dispersive network structure itself

would mitigate aggregate GDP growth.

5 Quantitative Applications

In this section, I first calibrate a set of parameters, set the value of elasticities of substitution,
and construct empirical industry-specific TFP shocks from the data. Second, I apply several
quantitative exercises to assess the role of production network structures in shaping GDP
growth and growth volatility. As discussed earlier, the model-simulated results are obtained

by solving the model nonlinearly.
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5.1 Calibration Targets

First, in firms’ production functions, intermediate input shares 7;; are calibrated so that the
steady-state input cost ratios match the elements in the empirical input-output matrix W.
Then I calibrate labor shares a; to be the value added over gross output ratio by sector. I
assume the two elasticities of substitution in the production function to be common across
industries, respectively.!® Specifically, I set the elasticity of substitution between labor and
intermediates ey = 0.4, as 7 estimates its value to range from 0.4 to 0.8. ? also argues that
with a relatively broad industry classification, industries can barely find close substitutes for
inputs in production, so the elasticity of substitution across intermediate inputs €y should
be close to zero. Therefore, I set ex = 0.001 for our model with 46 industries.

Next, I calibrate sectoral expenditure shares b; in the representative household’s consump-
tion function to match the empirical input-output table. I set the elasticity of substitution
across final consumption goods to be e¢ = 0.9 since the estimated parameter should be
slightly less than one (? and 7). A higher ec implies that the household responds to an
increase in the relative price of a product by substituting away from it. In addition, following
?, I set the Frisch elasticity of labor supply .5 = 2 in the utility function.

Finally, the process of sectoral productivity follows a random walk as in Equation (4). I
specify sectoral TFP shocks k; to be lognormally distributed so that logr; ~ N(—%;/2, ¥;),
where 3J;; represents the sample variance of log TFP growth in industry ¢. In our analysis,
I work with uncorrelated sectoral productivity shocks.!? To calibrate the sample variance
of log TFP growth, I first combine the US KLEMS data compiled by ? and the BEA’s
annual input-output tables with 46 industries from 1970 to 2017. Then I measure sectoral

productivity growth as sectoral Solow residuals following ? and calculate the variance.

5.2 Model-Simulated Regression

In this subsection, I study the quantitative predictions of the model regarding the empir-
ical correlations between the production network structure, real GDP growth, and growth
volatility, as documented in Section 3.3.

To begin with, I simulate the series of sectoral productivities of 7" = 50 years for the
U.S. economy by S = 300 times. The process for sectoral productivity follows a random
walk as in equation (4), in which shocks k; are independent and lognormally distributed
with logr; v« N(=>_,./2,>,,). For each simulation s C S, I match the initial steady-state

18The estimation of sectoral elasticity of substitution might not be applicable with a level of disaggregation
of 46 industries due to data availability (7).

192 argue that the average correlation between sectoral growth rates is small (less than 5%) with a similar
level of industry disaggregation as in this paper.
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Table 4: Model-implied Real GDP Growth and Centrality Dispersion.

0 @) ®
Data Model Model
Variables (0.9,0.4,0.001) (0.999,0.999,0.999)
log(Std.centralityr)  -0.861%** -0.1817%** 2.770**
(0.280) (0.009) (1.267)
log(Int.m/outputy)  -0.423%** -1.132%%* -0.868***
(0.156) (0.030) (0.012)
log(Int.m/outputs.) -27.378%** 5.288%** -3.974%**
(4.587) (1.035) (0.260)
log(Serv./GDPr) -0.142%%* -0.889%#* -0.001
(0.396) (0.051) (0.006)
Observations 48 15,000 15,000

! Using Alog(RG D Pr) as the dependent variable, column (1) presents the empirical
results from Table 2, while column (2) and (3) present the OLS regression results
estimated from the model-simulated variables. All model-implied variables except
real GDP growth have been HP-filtered with a smoothing parameter of 6.25. The
number of observations used in model is computed as T' x S.

2%k < 0.01, **p < 0.05, *p < 0.1, and robust standard errors are in the paren-
theses.

input-output matrix to the empirical input-output table of 1970, as 1970 is the first year
in the sample. The rest of the parameters are calibrated to match year 1970’s economy.
I also assume workers can flexibly move across industries. Because I simulate the model
economy for 50 years, the full reallocation assumption is considered more appropriate in this
scenario. Next, I feed each productivity process into the model. With the model-implied
path for aggregate real GDP and input-output matrix, I calculate the time series of real GDP
growth, growth volatility, centrality dispersion, as well as other control variables included in
the empirical regressions. Last, I re-estimate the correlation between the model-simulated

input-output network structure, real GDP growth, and growth volatility over S simulations.

The results of re-estimating equation (1) and (2) with model-simulated variables are
shown in the second column of Table 4 and 5, respectively. I include the empirical results
in column (1) in each table for comparison. Overall, with the calibration (e¢,ey,ex) =
(0.9,0.4,0.001), our model is able to deliver the observed empirical patterns. In particular,
the model predicts a negative relationship between centrality dispersion and real GDP growth
in Table 4, implying that as the production network becomes sparsely connected, GDP
growth tends to slow down. However, the estimated coefficient on centrality dispersion

log(Std.centralityr) is only about one-quarter as big as observed in the data. On the other
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Table 5: Model-implied Growth Volatility and Centrality Dispersion.

(1) (2) (3)

Data Model Model
Variables (0.9,0.4,0.001) (0.999,0.999,0.999)

log(Std.centralityr) — 0.397** 0.168%*** -T.98 TRk
(0.210) (0.004) (0.792)

log(Serv./GDPy)  0.345 -0.059%* -0.022%%*
(0.271) (0.003) (0.004)

Growth volatilityp_, -0.292** -0.345%** -0.301%***
(0.132) (0.007) (0.009)
Observations 48 15,000 15,000

1 Using Growth volatilityr as the dependent variable, column (1) presents the
empirical results as in Table 3, while column (2) and (3) present the OLS re-
gression results estimated from the model-simulated variables. All model-implied
variables have been HP-filtered with a smoothing parameter of 6.25. The number
of observations used in model is computed as T' x S.

2¥¥%p < 0.01, **p < 0.05, *p < 0.1, and robust standard errors are in the paren-
theses.

hand, as presented in Table 5, the calibrated model is able to capture the positive correlation
between centrality dispersion and growth volatility as empirically, except that the estimated
coefficient is of an order magnitude smaller, which is 0.168 compared to 0.397. One possible
explanation for the smaller estimated coefficients is that our parsimonious model has inelastic
labor supply and abstracts from capital accumulation. As argued by 7, elastic capital and
labor supply would further amplify TFP shocks.

Finally, in column (3) of Table 4 and 5, I report the model’s implied regression coefficients
for a (near) log-linear Cobb-Douglas economy by setting (¢, ey, ex) = (0.999,0.999, 0.999).
As Proposition 1 predicts, the Cobb-Douglas model is unable to replicate the empirical facts.

5.3 The Role of Network Linkages in Propagating Shocks

The previous quantitative exercise highlights the crucial role of production network structure
in explaining business cycle fluctuations in the United States over a long time horizon. To
ensure the changes in GDP growth and growth volatility are not purely driven by variations
in industry sizes, I construct two economies with identical Domar weights but different inter-
sectoral linkages to disentangle the contribution of network interconnections. Without loss
of generality, I study a three-sector economy to avoid complexity in the calculation.

In this exercise, I choose year 2002 as the benchmark economy. In particular, I aggregate

the original 46 industries into three broadly defined sectors: Agriculture, Manufacturing, and
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Table 6: Simulated GDP Moments in the Benchmark and Counterfactual Economies.

(ecyey,ex) Mean Standard Deviation Skewness Ex-Kurtosis
(x10%) (x10%)
Panel A: No Labor Reallocation
Benchmark Economy -5.68 0.20 -2.52 10.92
(0.9,0.4,0.001)
Counterfactual Economy -2.68 0.15 -1.20 3.04
(0.9,0.4,0.001)
Benchmark Economy -0.36 0.13 0.01 -0.02
(0.999,0.999, 0.999)
Counterfactual Economy -0.36 0.13 0.01 -0.02

(0.999, 0.999, 0.999)
Panel B: Full Labor Reallocation

Benchmark Economy 0.22 0.24 0.23 0.03
(0.9,0.4,0.001)
Counterfactual Economy 0.07 0.22 0.18 0.01
(0.9,0.4,0.001)
Benchmark Economy 0.00 0.00 0.32 0.11
(0.999, 0.999, 0.999)
Counterfactual Economy 0.00 0.00 0.25 0.09

(0.999, 0.999, 0.999)

L All simulated moments of log GDP are calculated from 80,000 draws.

Service, to construct a new 3 x 3 input-output network. Then I construct a counterfactual
economy where the three industries have identical industry sizes (Domar weights) as the
benchmark one but are connected differently. I shut down the Domar weights channel in
the model, so the only source of variation in GDP fluctuations comes from the change in
production network structures (or network interconnections).

Moreover, I specify two sets of elasticity of substitution parameters in our analysis: one
is the benchmark calibration (e¢, ey, ex) = (0.9,0.4,0.001), as described in Section 5.1, and
the other is (e¢, ey, ex) = (0.999,0.999,0.999) to perform a (near) log-linear Cobb-Douglas
model. I also consider two extreme possibilities for the labor market: the case with no labor
reallocation, meaning each labor works for a specific industry and cannot be reallocated,
and the case with full labor reallocation, where labor can move costlessly across industries.
Intuitively, workers cannot move easily across industries within a short time horizon after
shocks, so I assume no reallocation for studying shocks’ short-run impact. Alternatively,
I view the full reallocation assumption as more appropriate to model the long-run impact
of productivity shocks. Last, the rest of the parameters are calibrated to match the two

economies separately.
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Table 6 displays the mean, standard deviation,?® skewness, and excess kurtosis?! of model-
simulated log aggregate GDP under different specifications. The first two rows in each panel
present the results of our CES model with non-unitary elasticities, while the last two rows
illustrate the results of a log-linear Cobb-Douglas model. The moments are calculated from
80,000 draws.??

I start by explaining the simulated moments under no labor reallocation assumption in
Panel A. With non-unitary elasticities (0.9,0.4,0.001), all four simulated moments in the
benchmark economy are at least twice as much as those in the counterfactual economy
in magnitude. Loosely speaking, since the only distinction between the two economies is
industry interconnections—ceteris paribus—variations in the simulated GDP moments would
attribute to various network structures. For example, a productivity shock to “Agriculture”
in the benchmark economy causes a greater loss in the mean of log GDP (5.68—2.68 = 3) and
higher volatility (0.20—0.15 = 0.05) than in the counterfactual economy. These quantitative
results are consistent with Proposition 1’s prediction that a more dispersive network structure
itself dampens the negative impact on GDP growth. On the other hand, great skewness and
excess kurtosis imply that the benchmark economy is more vulnerable to adverse shocks.?

In contrast, I set parameters (e¢,ey,ex) = (0.999,0.999,0.999) to perform a Cobb-
Douglas model and re-calculate GDP moments, listed in the third and fourth rows of Panel
A. As Hulton’s Theorem predicted, simulated results are identical for both economies. This
is to say, up to the first-order approximation, the impact of industry-specific productivity
shocks on aggregate GDP can be entirely captured by the size of industries, meaning network
linkages do not matter. Last, I compare the simulated GDP moments of our benchmark
economy between two sets of parameters (in row one and three). The differences in results,
e.g., 5.68 — 0.36 = 5.32 in the mean, capture shocks’ nonlinear (higher-order) impact on
aggregate output.

A qualitatively similar pattern holds for the model with full labor reallocation assumption,
as shown in Panel B. On the one hand, the simulated moments are different under two labor
market assumptions, which suggests that the degree of labor reallocation could also affect

productivity shocks’ impact on GDP. On the other hand, with full labor reallocation, the

20In the model, the steady-state value of Y/Y equals one, which yields a log value of zero. Therefore, I
calculate the standard deviation of model-implied log (Y/Y) as the model-implied GDP growth volatility.

21Excess kurtosis refers to the difference between the kurtosis of log GDP and 3, which is the kurtosis of
log GDP distribution against the kurtosis of a normal distribution.

22 A1l exercises are simulated with respect to the same agriculture-specific productivity shock with mean 0
and the variance calibrated from the data.

23Figure 7 in Appendix C.1 shows the distribution of simulated GDP for the benchmark economy and
counterfactual economy. As seen in the figure, the left tail of the aggregate GDP distribution for the
benchmark economy is fatter than that for the counterfactual economy.
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gap in each simulated between the benchmark and counterfactual economies is smaller. For
instance, the reduction in the mean is 0.22 — 0.07 = 0.15, which is less than 3 under the
no-reallocation assumption. Intuitively, given ex = 0.01 < 1, if workers are allowed to
move freely across industries, a negative productivity shock to an industry will trigger a
reallocation of workers towards the hit industry, then mitigate the shock’s adverse effect on

GDP. Unsurprisingly, a Cobb-Douglas model behaves similarly regardless of interconnections.

5.4 The Aggregate Impact of the Covid-19 Crisis

In the last exercise, I study the quantitative impact of the Covid-19 Crisis on the real econ-
omy in our parsimonious model with input-output linkages.?* I assume the Covid-19 shock
is a labor supply shock, meaning it only affects the labor supply in each industry L;. There
are practical reasons for this assumption during the Covid-19 pandemic period. It could
be driven by government actions, such as stay-at-home orders, mandated shutdowns, and
reduced seating capacity in inner areas that prevent people from working. It might also be
households’ unwillingness to work due to concerns about their health or unemployment ben-
efits. Although the shock initially hit the labor market, it might affect industries’ production
decisions, then generate macroeconomic fluctuations via inter-sectoral connections.

The labor supply shock is calibrated to match the changes in the number of employees
in each industry in the United States from March 2020 to June 2020. The data comes from
the June 2020 Economic News Release compiled by the U.S. Bureau of Labor Statistics. I
observe that each industry experienced a 9% reduction in employees on average, whereas
“Accommodation” and “Food services and drinking places” lost more than half of their
workers. Moreover, I assume no labor mobility across industries since I am interested in the
shock’s impact on the aggregate economy within a quarter. In response to the labor supply
shocks, our model predicts a reduction of real aggregate GDP by 10.5%, which aligns with
the decline in real GDP in the second quarter of 2020 measured by the BEA. Therefore, this

model does a good job of predicting the aggregate performance of the U.S. economy.

6 Conclusion

This paper argues that the input-output network structure in isolation plays an essential
role in propagating sectoral productivity shocks and shaping aggregate fluctuations in the

U.S. economy from 1970 to 2017. First, I develop a new measure of network structure,

24There are other papers studying economic effects of the Covid-19 crisis on multi-sector Keynesian models
with nominal rigidities, see 7, 7 among others.
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named centrality dispersion, to capture the extent to which an economy has a group of star
input suppliers. Then I provide empirical evidence that as the U.S. production network has
become sparsely connected over the years, such that many more industries rely on a few
central input suppliers to produce, leaving the rest of industries more isolated, GDP growth
tended to slow down and be more volatile. Second, I build a multisector real business cycle
model incorporating CES production functions and preferences and inter-industrial linkages
and show that under the nonlinear characterization, production network structure plays a
crucial role in propagating sectoral productivity shocks onto aggregate fluctuations. Finally,
I measure sector-level productivity shocks from the data, feed them into the model, and
study quantitative predictions of the model regarding the empirical correlations between
production network structure, GDP growth, and growth volatility. Overall, the calibrated
model is able to deliver observed empirical patterns reasonably well, while a Cobb-Douglas
model fails to deliver. Our main finding suggests that the U.S. economy has been dominated
by a few central input suppliers, so adverse shocks to the economy, especially these star
industries, will have a more damaging impact on the real economy. As a result, ex-ante
regulations and supportive policies targeting large sectors or corporations, such as the Stress
Test, could be desirable to prevent them from catastrophic failure.

In order to emphasize the role of the production network structure, I have embedded inter-
sectoral linkages into a purposely simple multisector real business cycle model. A natural
next step would be to incorporate the rich set of nominal rigidities and market frictions,
which literature has argued are relevant for shock propagation and amplification within the
network. I also kept the quantitative exercise simple by focusing on sector-level productivity
shocks measured as a simple Solow residual. Another next step would be to incorporate

other shocks and understand what drives variations in the production network structure.
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A Concentration Centrality

A.1 A Measure of an Industry’s Influence across Consumers:

Concentration Centrality

I choose concentration centrality as the second network structure measure in our analysis.
Whereas KB centrality captures an industry’s systematic importance as an input supplier,
concentration centrality describes the variation in the extent to which one industry can in-
fluence the others. In other words, how evenly an industry’s impact is distributed across
its consumers within the network. This measure is theoretically founded by ? and de-
termines the second-order effect of sectoral productivity shocks on an economy’s aggregate
performance, such as GDP growth and volatility.

The concentration centrality of industry ¢ is defined as follows:

N
Concentration Centrality;y = Z AeVarianceyw (¥)),
k=1

and

N N

2

Variancegm (Vi) = Z Wy — (Zwklwli) )
=1 =1

where \; denotes sectoral Domar weights, that is, industry £’s sales to GDP ratio. Varianceyw (¥())
measures the variance of the ith column of centrality matrix W, using the kth row of the
empirical input-output matrix W as the distribution. Recall that each element in the cen-
trality matrix U = [¢;] measures sector [’s total reliance on its input supplier ¢, while
W = [wy| captures sector k’s input expenditure on good [ over its total input expenditures
in production. Intuitively, a smaller variance means that sector ¢’s influence is more evenly
distributed throughout the economy, thus having a lower concentration centrality. In the
following subsection, I will provide evidence for the relevance of concentration centrality and

an economy’s aggregate performance.

A.2 Concentration Centrality, Growth, and Volatility

In Section 3.3, I show empirical evidence of a significant relationship between centrality
dispersion and real GDP growth and growth volatility, respectively, and highlight the sole
role of network structure in shaping aggregate fluctuations. Next, I will explore the role
of concentration centrality, our second measure of network structure, in shaping economic

outcomes.
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Table 7: Real GDP Growth and the Concentration Centrality of “Management”, 1970—2017.

(1) (2)
Variables Alog(RGDPr) Alog(RGDPr)
log(Concent.centralitynanage,T) 0.196*** 0.184***
(0.061) (0.048)
log(Int.m/outputr) -0.21 7%
(0.156)
log(Serv./GDPr) -2.108*
(0.396)
R-squared 0.128 0.654
Observations 48 48

I This table presents the estimated coefficients of the relationship between real
GDP growth and the concentration centrality of “Management of companies
and enterprises”.

2 All variables except real GDP growth are HP-filtered with a smoothing
parameter of 6.25.

3%k < 0.01, **p < 0.05, *p < 0.1, and robust standard errors are in the
parentheses.

Table 8: Growth Volatility and the Concentration Centrality of “Retail trade”, 1970—2017.

0 )
Variables Growth volatilityr  Growth volatilityr
log(Concent.centrality;r) -0.080** -0.083**
(0.029) (0.035)
log(Serv./GDPr) 0.472
(0.374)
Growth volatilityr_q -0.431%** -0.506**
(0.145) (0.124)
R-squared 0.222 0.297
Observations 48 48

I This table presents the estimated coefficients of the relationship between real
GDP growth volatility and the concentration centrality of “Retail trade”.

2 All variables have been HP-filtered with a smoothing parameter of 6.25.
3%y < 0.01, **p < 0.05, *p < 0.1, and robust standard errors are in the
parentheses.

Observation 3 An industry’s concentration centrality significantly correlates with real GDP

growth and growth volatility.

To achieve this goal, I first regress aggregate real GDP growth on each industry’s con-

centration centrality separately using the following equation:
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Alog(RGDPr) = Bslog(Concent.centrality;r) + Xiprys + € (14)

where Alog(RG D Pr) represents real GDP growth at time T, and Concent.centrality;r is
the concentration centrality of sector i of year 7. I add the same control variables? as in
Section 3.3.1: log of service sales share in GDP, log(Serv./GDPr), and log of intermediate
input sales to gross output ratio, log(Int.m/outputr).

Table 7 illustrates the estimated results of the “Management of companies and enterprises
(Management for short)” sector. The positive coefficients (0.196 and 0.184) imply that a
greater concentration centrality of “Management” is associated with faster real GDP growth.
In other words, as the influence of “Management” is more unevenly distributed amongst its
consumers within the network, it accounts for greater aggregate fluctuations. In our analysis,
about half of the 46 industries exhibit a significant relationship between their concentration
centrality and aggregate GDP growth.?

Next, I estimate the conditional relationship between an industry’s concentration cen-

trality and real GDP growth volatility using the equation below:

Growth volatilityr = psGrowth volatilityr_1 + Bslog(Concent.centrality;r) + X/T% + €
(15)

where Growth volatilityr denotes growth volatility, which is the standard deviation of real
GDP growth at time 7', and the key regressor C'oncent.centrality,; refers to sector i’s con-
centration centrality in year 7. The two control variables in X are one-period lag of growth
volatility, Growth volatilityr_,, and log of service sales over GDP ratio, log(Serv./GDPr).
Table 8 lists the results of estimating the correlation between growth volatility and the
concentration centrality of “Retail trade” and shows a strong negative correlation between
the two variables throughout the sample period. It implies that GDP growth volatility
decreases as “Retail” affect its customers more unevenly. As our final result, I find that 17

out of the 46 industries defined in this paper reveal such a significant relationship.?”

A.3 Model-Simulated Regression

I re-estimate the relationship between model-simulated industry concentration centrality,

GDP growth, and growth volatility as in equation (15) and (16), respectively, and list the

251 did not include the squared input sales ratio in the regression because the corresponding estimated
coeflicient is not significant.

26Note that although I obtain a positive estimated coefficient for “Management,” the sign of the estimated
coefficient is not consistent across industries.

27See footnote 28.
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Table 9: Model-implied Real GDP Growth and Concentration Centrality of “Management”.

0 ® 0 @
Variables Data: Alog(RGDPr) Model: Simulated Alog(RGD Pr)
log(Concent.centralitynranage,r) 0.196%*¥*  0.184*%F  -0.022 0.486***
(0.061)  (0.048)  (0.029) (0.014)
log(Int.m/outputr) -0.21 7% -1.379%K*
(0.156) (0.036)
log(Serv./GDPr) -2.108* -1.087#+*
(0.396) (0.114)
Observations 48 48 16,500 16,500

! Column (1) and (2) present the empirical results as in Table 7, while Column (3) and (4) present the
OLS regression results estimated from the model-simulated variables. All model-implied variables except
real GDP growth have been HP-filtered with a smoothing parameter of 6.25. The number of observations
used in model is computed as T" x S.

2#%k < 0.01, **p < 0.05, *p < 0.1, and robust standard errors are in the parentheses.

Table 10: Model-implied Growth Volatility and Concentration Centrality of “Retail trade”.

0 @) ® @
Variables Data: Growth volatilityr Model: Simulated Growth volatilityr
log(Concent.centrality;7)  -0.080** -0.083** -0.195%** -0.094***
(0.029) (0.035) (0.055) (0.014)
log(Serv./GDPr) -0.070 -0.750***
(0.374) (0.272)
Growth volatilityr—_ -0.4371%** -0.506** -0.303*** -0.359**
(0.145) (0.124) (0.099) (0.089)
Observations 48 48 16,500 16,500

! Column (1) and (2) present the empirical results as in Table 8, while Column (3) and (4) present the OLS
regression results estimated from the model-simulated variables. All model-implied variables except real
GDP growth have been HP-filtered with a smoothing parameter of 6.25. The number of observations used

in model is computed as T x S.
2%¥%p < 0.01, **p < 0.05, *p < 0.1, and robust standard errors are in the parentheses.

results of “Management” and “Retail trade” in Table 9 and Table 10. In each table, the
model-implied results (in the last two columns) replicate the empirical results (in the first
two columns) reasonably well, especially for the coefficient signs. Broadly speaking, our
model is able to replicate the observed correlation between concentration centrality and GDP

growth for 17 out of 23 industries.?® Meanwhile, it reproduces the empirical concentration

28] observe a significant relationship between concentration centrality and GDP growth for 23 of the 46
industries in the sample.
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Table 11: Sectoral Real Output Growth and Centrality Growth, 1970—2017.

o) 2 ©)
Variables Alog(real output;r) Alog(real output;r) Alog(real output;r)
Alog(centrality;r) 0.391%*** -0.089*** -0.393%+*
(0.040) (0.031) (0.034)
Alog(real int.m;r) 0.459%%* 0.285%**
(0.011) (0.014)
Alog(Domar weight;r) 0.357#**
(0.021)
Alog(real output;r_1) 0.189*** 0.071*** 0.056***
(0.021) (0.016) (0.015)
R-squared 0.081 0.512 0.573
Observations 2116 2116 2116

L Column (1)-(3) present the results of an OLS regression in first differences.
2 kky < 0.01, **p < 0.05, *p < 0.1, and robust standard errors are in the parentheses.

centrality—volatility correlations for 10 of the 17 industries with significant estimates.

B Industry’s Centrality and Real Output Growth

In this section, I study the relationship between an industry’s centrality and its real out-
put growth by running the following regression on a panel of 46 industries spanning the
1970—2017 period:

Alog(Real output;r) = pAlog(Real output;r_1) + BAlog(Centralityr) + Alog(Xip)y + eir

(16)
where Real ouput;7 represents the real output in sector ¢ at time 7', measured as the chain-
type quantity index of sectoral gross output. Therefore, Alog(Real output;r) refers to sec-
toral real output growth. Centrality,r denotes the centrality of industry ¢ in year 7. Vector
X contains two variables: real intermediate inputs real int.m;7 used by sector ¢ in year T'
and Domar weights®® Domar weight;r. 1 also include the one-period lag of output growth

in the regression to capture the possibility of persistent changes in output (7).

Observation 4 An industry with a higher centrality tends to have a slower growth rate to

grow over time.

29T include Domar weights in the regression for the same reason specified in Section 3.2.2.
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Table 11 presents the regression results of estimating equation (20), which reveal a sig-
nificant negative correlation between sectoral centrality growth and real output growth. In
other words, as an industry becomes a more central input supplier over the years, i.e., many
more network customers rely on it for their own production process, it tends to have slower
(gross output) growth rate to grow. To understand the economic significance of the result
in column (3), for a one-standard-deviation increase in an industry’s centrality growth, its

real output growth declines by about 0.004.

C First-Order Conditions and Steady-State Values

In this section, I spell out the solution of our model. In particular, I write out the con-
strained maximization problem of a social planner, take first-order conditions, and specify

the conditions that characterize the steady state.

C.1 The Social Planner’s Problem
The Lagrangian is specified as follows:

erstl

N _fCc
_ City E€=1\ cc—1 €LS L
L=C > b(=) e - Lgts
t(il (ézt) ) 8LS+1 St

N N
+ sz‘t(yit — Cit + Z Zjit) (17)
i=1 j=1

N N
+ Z wist(l_is,t - lis,t) + wgt<l_g,t - Z lig,t)J
=1 =1

where p;; is the Lagrangian multiplier on good ¢’s market-clearing condition. wg and wg,
represent the Lagrangian multipliers on the specific and general labors, respectively.

Re-stating the expressions
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The first-order conditions are:

i amel3) (@

[T : Pjt _ A% ((1 alt)yzt) ((1 - alt)yzt> 7 <%JtXlt) (%Jtht)
Y Dit * Xit Xit Tijt Tijt
(19)

1
; LZ €Y o
[lz'st]l Wist = pztyztAzt( tA> aitﬂi(i) lzs; (20)

Liotl 0 Wor = pitUir Ay i )Ea, Z( )Eylfl. 21
[gt] gt = DitYit t<ztA t( 5) th igt ( )

Assume the model economy only contains one type of labor [; for simplicity and w denotes

the corresponding wage rate. Substituting the first-order conditions into the production

function implies that

1:5X 1
pit = Ay l[aztwt T4 (1= ag) <Z %Jtp]t ) Jimey. (22)

7=1

C.2 Steady-State Values

To obtain the steady-state value of key variables in the first-order conditions, we need to
ensure that the shares of bar variables in equations to be equal to the corresponding long-run
ratios: P. = 1, A; = 1, p;i/C = by, ¢ Xi/pii = 1 — @i, pjZij/pilii = Yij» wLi/pilii = as.
Towards the goal of solving for the steady-state, I drop time subscripts and re-arrange the

selected first-order conditions of industry ¢ as follows:

-1

JJzJ = (1 f)/z]yzplpj <Z ’sztpkt ) 5 (23)

l; = a;py; Jw. (24)
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D Proof of Proposition 1

According to equation (18), the envelope theorem implies that

dL
d A;

= PilYi (25)

where L is equivalent to aggregate GDP, Y. Therefore, equation (29) yields

dlogY  piy;
dlogA;, Y

Next, recall that the market-clearing condition for good i is given by y; = ¢; + X_ @y,

~ A (26)

and define g;; = p;x;;/piy;. Multiplying both sides by p; and dividing by aggregate GDP
implies that

Ai=bit Y gride, (27)
h=1

where \; = p;y;/Y is the Domar weight of industry i and b; = p;c;/Y are consumption shares
in household’s first-order condition. Differentiating both sides of the above equation with

respect to logA; implies that

n

dgri
2
dlogA Zg’“dl Z FdlogA; (28)

On the one hand, by Shephard’s lemma, differentiating both sides of equation (23) with

respect to logAj and evaluating it at logA = 0 leads to

d logp; . = d logp;
o8P :—1(Z:k3)+2'7ij 08P

29
d log Ay (29)

where p; = p;/w.
Recall that the model-implied Leontief inverse matrix is ® = (I —I')7!, and ® = [¢;;]

denotes the element in the matrix, the above equation can be rewritten as

d logp; B
d logAy, hoga=0 Pt (30)

On the other hand, equation (23) implies that g;; = (1—ai)7ijyipi1_€x/ ( Zgil viktpigex> )
Hence, differentiating both sides of this expression, evaluating them at logA = 0, and plug-
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ging the resulting expression back into equation (28) implies that

- d/\k dlogp; " dlogpr
z 1 - 7 31
dlogA Z TR flog A, + Z £x) i (dlogA 1—ayg Z Thr Tlog A, (31)

Thus, using equation (30), we obtain
d\; - A\ .
Multiplying both sides of the above equation by ¢;s, summing over all ¢ leads to
2 logY d M\ al al - al
= = — 1A ( A sPsi '>,
TTogAd logA, ~ dlogA, ;(EX )k IZ:;'Ylebl o1j T ;% o ;%mbz]

(33)

which implies the second-order effect on aggregate GDP with respect to shocks to sector ¢

and j. In particular, when i = 7,

N

logy  d N
d 10(;%42 ~ dlog4; =D (ex—1) Ak(ZW% Z“’“(b“ ) (34

k=1

Recall that the model-implied centrality of industry j is C’ent;"ality(j = val ¢ij, thus

A
Centmlzty C’entmlzty(j o Zs | Osi Zz L Duj Zk 17 ’yks’ykl Re-writing equation (33)

leads to

d? logY
d logA;d logA;

N
~(ex — 1) ( Z Npiidi; — C’entrality(i)Centrality(j)>. (35)

=1
E Simulated GDP Distributions for Application One

In Figure 7, I provide two histograms to visually illustrate model-simulated GDP in the
benchmark (blue bars) and counterfactual (orange bars) economies under different assump-

tions on the labor market.
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Figure 7: Simulated GDP in the Benchmark Economy and the Counterfactual Economy.
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