
The Importance of Input-Output Network Structure in

the U.S. Economy*

Shuoshuo Hou

Temple University

October, 2022

Abstract

Hulton’s Theorem states that in the presence of input-output linkages, the impact
of an industry-level shock on the aggregate economy is entirely captured by the size of
this industry, regardless of its position in the network. This paper argues that the pro-
duction network structure in isolation represents an essential channel in shaping GDP
growth and growth volatility. First, I show evidence that as industries in the U.S.
economy became sparsely connected from 1970 to 2017, that is, many more industries
relied on a few central input suppliers for production, GDP growth slowed and became
more volatile. Motivated by these empirical facts, I embed input-output linkages into
a multisector real business cycle model and provide a nonlinear characterization of the
macroeconomic impact of sector-specific productivity shocks to highlight the key role
of production network structures. Finally, I measure realized sector-level productivity
shocks from the data, feed them into the model, and study model-implied relation-
ships between production network structure, GDP growth, and growth volatility. Our
calibrated model is able to explain about 20% of the business cycle fluctuations as
observed in the data. Moreover, our results imply that network connections matter
beyond industry sizes.

JEL classification: C67, E23, E32, L16

Keywords : production or input-output network structure, centrality dispersion, concentra-

tion centrality, GDP growth, growth volatility, nonlinearity

*I would like to extend my sincere thanks for the guidance and supports from my committee members:
Pedro Silos (Chair), Charles Swanson, Martin Lopez-Daneri, and Olga Timoshenko. My gratitude also
goes to Catherine Maclean and Michael Leeds for providing me with tremendous comments on research and
assistance in job market preparation. Finally, I appreciate the academic discussions with my colleagues: You
Du, Mark Robinson, Elisheva Stern, and Huilin Zhu.

1



1 Introduction

In the modern economy, the production of any good or service always needs cooperation

among a wide range of industries or firms. Industries buy goods and services from differ-

ent suppliers to produce and sell their products to various consumers, which then form a

particular structure of an input-output network or a production network.1 Based on this

network view of the production process, shocks to any industry or firm can spread to its

neighbors, sectors directly connected to it, its neighbors’ neighbors, and so forth via input-

output linkages. For example, in September 2021, a record number of cargo ships were stuck

at the port of Los Angeles and waited to unload due to a shortage of trucks and drivers. In

this example, not only was the transportation sector affected, but many other sectors waited

for this cargo for production, such as apparel manufacturing and wholesale trade, as well

as their consumers. As a result, industry-level distortions will be propagated and amplified

through the production network and cause aggregate fluctuations. However, what is the role

of the production network structure in explaining an economy’s aggregate outcomes?

This paper puts forth the idea that the production network structure in isolation repre-

sents an essential channel in shaping GDP growth and growth volatility in the United States.

I make this argument in three steps. First, I develop a new measure of production network

structure, named centrality dispersion, and show that industries in the U.S. economy have

become sparsely connected from 1970 to 2017, that is, a few highly central input supplier

industries combined with an isolated group of less important industries. With such changes

in the network structure, I observe that aggregate GDP growth tended to slow down and

became more volatile. Second, I embed inter-sectoral linkages into a constant elasticity of

substitution (CES) multisector real business cycle model and study the nonlinear impact

of industry-specific productivity shocks on the aggregate economy. In this theoretical envi-

ronment, the production network structure (or centrality dispersion) plays a key role in the

propagation and amplification of sectoral shocks. Finally, I construct realized sectoral pro-

ductivity shocks from the data, feed them into the model, and study quantitative predictions

of the model regarding the empirical correlations between input-output network structures,

GDP growth, and growth volatility. The calibrated model can deliver the observed empirical

patterns in the U.S. economy moderately well, while a Cobb-Douglas model fails to deliver.

In the first step, this paper reveals the changing nature of the U.S. input-output network

structure and provides empirical evidence of a significant correlation between the network

structure and GDP growth and growth volatility, respectively. Specifically, I first use the

summary-level input-output data from the Bureau of Economic Analysis (BEA) to construct

1Throughout this paper, I use terms “production network” and “input-output network” interchangeably.
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annual input-output tables of the U.S. economy over the 1970−2017 period. Each input-

output table captures the flows of intermediate inputs from a supplying industry to its

consumer industries. Next, I develop a new measure of production network structure named

centrality dispersion, describing the extent to which an economy has a group of important

input suppliers, and identify a gradually sparsely connected network structure of the U.S.

economy across the years. For example, a few industries, such as “Finance and insurance”

and “Professional services”, have become more central suppliers within the network, meaning

many more industries rely on their services to produce, while other industries, like “Paper

products” and “Mining”, have become more isolated. Last, I study the empirical relationship

between changes in the network structure and aggregate fluctuations. The evidence shows

that as the U.S. input-output network structure becomes sparsely connected over time,

aggregate GDP growth tends to slow down and be more volatile.

Motivated by these empirical observations, in the second step, I build a multisector real

business cycle model embedded with intersectoral linkages to understand the role of the

production network structure in propagating industry-specific productivity shocks. In our

model, each industry produces a distinct product using labor and a bundle of intermediate

inputs purchased from other industries. All the inputs are aggregated by a CES produc-

tion function, which characterizes the empirical input-output network. Hulten’s theorem

states that, in an efficient economy, Domar weights, defined as an industry’s total sales to

aggregate GDP ratio, are sufficient statistics in explaining the impact of sector-specific pro-

ductivity shocks on GDP (see ?, ?, ?, and among others). In other words, in the presence

of input-output linkages, the impact of a sector-level shock on the aggregate economy is en-

tirely captured by the size of this sector, regardless of its position in a production network.

Therefore, in order to highlight the importance of production network structure in propa-

gating shocks and shaping macroeconomic outcomes, I provide a nonlinear approximation

of sectoral productivity shocks’ impact on GDP, as in ? and ?.

The final step of our analysis is to use the calibrated model to perform several quantitative

exercises assessing the role of input-output network structure in shaping GDP growth and

growth volatility under nonlinear characterization. In the first exercise, I measure the realized

industry-specific productivity shocks from the data using the Solow residual approach, feed

them into the model, and study the quantitative predictions of the model regarding the

empirical correlations between the input-output network structure and two macroeconomic

aggregates. Overall, our model is able to deliver the observed empirical patterns moderately

well, while a Cobb-Douglas model fails to deliver. In particular, our model implies that a

more sparsely connected network structure is associated with lower GDP growth and higher
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growth volatility. Nevertheless, the model-estimated key coefficients2 are about one-quarter

as big as those observed in the data. To ensure the changes in GDP growth and growth

volatility are not purely driven by variations in industry sizes, in the second exercise, I build

two three-sector economies with identical Domar weights but different inter-sectoral linkages

to disentangle the contribution of network interconnections. In the last exercise, I use our

model to estimate the impact of the Covid-19 shocks, measured as the reduction in sectoral

labor supply from March 2020 to June 2020, on the real economy. Our model predicts a

roughly 10.5% reduction in real GDP, which is in line with the data in the second quarter

of 2020 from the BEA.

The rest of the paper is organized as follows. In section 2, I review three strands of

related literature and present the contributions of this paper. In section 3, I first measure

the empirical input-output production network of the United States spanning the 1970−2017

period and document several stylized facts about the network structure. Then I show evi-

dence that the changing network structure significantly correlates with the U.S. economy’s

aggregate performance. Motivated by these empirical observations, in section 4, I incorpo-

rate inter-sectoral linkages into a multisector real business cycle model to study the role of

network structure in propagating and amplifying sectoral productivity shocks under nonlin-

ear characterization. In section 5, I use the calibrated model to perform several quantitative

exercises. Section 6 concludes.

2 Literature Review

This paper relates to several strands of literature that study: i) the origin of macroeconomic

fluctuations, ii) the role of an input-output network in propagating idiosyncratic shocks into

the aggregate economy, and iii) how structural transformation determines economic growth.

In the branch of theoretical literature that studies the network origin of macroeconomic

fluctuations, the canonical work of ? and ? point out that aggregate volatility is the pri-

marily result of microeconomic shocks propagating through input-output networks; also see

?, ?, ?, ?, and ?. At the firm level, ? and ? show that fundamental volatility, defined

as the weighted3 sum of firm-level idiosyncratic shocks, is able to track the volatility of

macroeconomic variables over time. As with the existence of large firms, the impact of firm-

level total factor productivity (TFP) shocks will not be canceled out, resulting in aggregate

fluctuations. At the industry level, ? argue that idiosyncratic shocks to important input

2Key coefficients refer to the estimated coefficients of model-implied centrality dispersion and concentra-
tion centrality, respectively.

3Following Hulten’s theorem, weights are the Domar weights of selected large firms in the U.S. economy.
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suppliers (industries) propagate more widely through the input-output network, thus do not

wash out with shocks to small sectors, generating sizeable aggregate movements. Moreover,

? generalizes ?’s theoretical framework from a Cobb-Douglas economy to accommodate flex-

ible substitution patterns in production functions and quantifies the contribution of sectoral

and aggregate shocks to business cycle fluctuations. Both papers conclude that the inter-

play of idiosyncratic shocks and the input-output network can account for at least half of

the aggregate volatility. Sharing the spirit of previously mentioned papers, I study the im-

pact of industry-specific productivity shocks on macroeconomic aggregates when propagating

through different input-output networks.

My paper also contributes to a growing literature on assessing the role of an input-output

network in shaping macroeconomic fluctuations with a multisector real business cycle model

initiated by ?. ? employ this framework with Cobb-Douglas technologies and argue that

in a linear economy, Domar weights are sufficient statistics in determining an economy’s

aggregate performance, not the intricate details of the network. Nevertheless, ? incorporate

CES production functions and preferences into a multisector model and provide a nonlinear

characterization of the impact of sectoral productivity shocks on the aggregate economy. The

authors emphasize that in the presence of nonlinearity, network linkages do matter. ? also

clarify how network interactions function as a mechanism for propagating and amplifying

microeconomic shocks by providing the first- and second-order approximation of the structure

of equilibrium. Other papers (see ?, ?, ?, and ?) explore the role of an input-output network

in an inefficient economy and illustrate that market imperfections, for example, misallocation

of resources, sectoral mark-ups, financial distortions, etc., can accumulate through the input-

output network, causing systematic influences.

More broadly, my paper adds to the empirical literature on the relationship between

structural change and economic growth. For example, ? develop a model with endogenized

technological diversification and show that firms in rich economies tend to use a larger variety

of inputs, which mitigate their exposure to productivity shocks and thus reduce aggregate

volatility. ? document the fact that the service sales to GDP ratio increases with income

across countries and develop a multisector growth model to account for it. ? and ? provide

cross-country evidence that high-income countries, or the countries that have experienced an

increase in the share of services in GDP over time, tend to grow slower and be less volatile

than middle-income ones. Moreover, Moro constructs a two-sector general equilibrium model

to study the impact of structural change on cross-country differences in GDP growth and

volatility. More recently, ? shows that GDP growth volatility declines with production

network diversification−as measured by the fraction of input-output connections within a

network.
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Compared to the aforementioned papers, my paper’s contributions are as follows. First,

from an empirical standpoint, I develop a new measure of production network structure,

centrality dispersion, to describe the extent to which an economy consists of a group of star

sectors. I show that the production network structure is significantly associated with the

economic growth and volatility of the United States, complementing ?’s work. Moreover,

I generalize ? and ?’s theoretical results and show that centrality dispersion (our network

structure measure) play an essential role in explaining the impact of sector-specific productiv-

ity shocks on the aggregate economy up to the second-order approximation. Last, I construct

two three-sector economies with identical Domar weights to disentangle the contribution of

network linkages in determining GDP growth and growth volatility.

3 Data and Stylized Facts

In this section, I study the empirical relationship between the production network structure

of the U.S. economy and real GDP growth and growth volatility, respectively. I start by

describing the data and then document several empirical facts to reveal the changing nature

of the U.S. production network structure from 1970 to 2017. Last, I estimate the correla-

tion between the network structure and the economy’s aggregate performance with panel

regressions.

3.1 Data

To map the U.S. production network to data, I use the summary-level input-output data

from the BEA, which measures the input transactions among the 46 U.S. industries4,5 over a

long time span at an annual frequency. Table 1 lists the 46 industries included in our analysis.

In particular, I first combine the BEA’s Make and Use tables6 to derive the Commodity-by-

Commodity Direct Requirements (CCDR) table for each year over the 1970−2017 period.

Each nonzero entry (i, j) in the CCDR table denotes a flow of inputs from a supplying indus-

4This paper only focuses on the flow of inputs between the U.S. industries, ignoring input trading with
the rest of the world.

5The 46 industries in the sample were classified according to the North American Industry Classification
System (NAICS) in 1947. However, in 1963 and 1997, the BEA revised the data collection mechanism and
reclassified the economy into 65 and 71 industries, respectively. Therefore, I aggregate several industries
back into the original 46-industry definitions to ensure consistency in measurement, see details in ?.

6The Make and Use tables used to construct CCDR tables are collected before redefinitions of secondary
products. A redefinition is a transfer of a secondary product from the industry that produced it to the
industry in which it is primary, as described in ?. Thus, for example, the output and associated inputs
for restaurants located in hotels are moved from the hotels and lodging places industry to the eating and
drinking places industry.
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Table 1: The 46 Industries Used in the Analysis.

Farms Petroleum and coal products
Forestry, fishing, and related activities Chemical products
Oil and gas extraction Plastics and rubber
Mining, except oil and gas Wholesale trade
Support activities for mining Retail trade
Utilities Transportation and warehousing
Construction Information
Wood products Finance and Insurance
Nonmetallic mineral products Real estate
Primary metals Rental and leasing services
Fabricated metal products Professional, scientific, and technical services
Machinery Management of companies and enterprises
Computer and electronic products Administrative and waste management services
Electrical equipment, and components Educational services
Motor vehicles, bodies and trailers Health care and social services
Other transportation equipment Arts, entertainment, and recreation
Furniture and related products Accommodation
Miscellaneous manufacturing Food services and drinking places
Food and beverage and tobacco products Other services, except government
Textile mills and textile product mills Federal general government
Apparel and leather and allied products Federal government enterprise
Paper products State and local general government
Printing and related support activities State and local government enterprise

try i to a demanding industry j within the network, while zero means no input transactions.

Then I normalize all column industries j to sum to one, as j’s total intermediate input ex-

penditures must be allocated to all (or at least some) industries in the economy. Therefore,

the entry (i, j) in our final table implies the value of spending on good i per dollar of the

production of good j, and I refer to the final table as the empirical input-output network. In

addition, the sum of values in rows i, presented as total purchases of good i in shares of the

demanding industry, captures sector i’s importance as an input supplier in the production

network.

Figure 1 illustrates the U.S. empirical input-output network structure in 1970 (top panel)

and 2017 (bottom panel) with heatmaps. Each row represents an industry supplying interme-

diate inputs for production to the others, while each column represents industries demanding

the inputs. I report each small rectangle in the heatmap as industries’ intermediate input

purchases from each supplier as a fraction of their total input expenditures. White (cool)

colors denote small shares, and bright colors denote large shares. As shown in the figure, a
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Figure 1: The U.S. Input-Output Network in 1970 (top) and 2017 (bottom)

Note: Heatmaps of empirical input-output networks. Entry (i, j) computes the share of total intermediate
input expenditure in sector j that is purchased from sector i.

few industries, such as “Wholesale trade (row 27)” and “Professional, scientific, and tech-

nical services (row 34)”, became more central suppliers in 2017 as they were connected to

many more industries. This is represented by more blue dots in a row. In contrast, other

industries like “Utilities” became more isolated within the network.
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3.2 The Changing Input-Output Network Structure of the U.S.

Economy

3.2.1 A Small World of Input Flows: Distance and Diameter

According to ?, a small-world network is a type of network in which most nodes are not

neighbors of one another but where most nodes can be reached from every other by a small

number of hops or steps. If so, when shocks hit a sector in such a network, especially a star

supplier, the impact would fast propagate to its neighbors, then to the rest of the economy,

generating aggregate fluctuations.

To identify such features, I measure the distance and diameter of the U.S. input-output

network over time. Define network diameter as the maximum length of all ordered entries

(i, j) of the shortest path from i to j and average distance as the average length of the

shortest path for all entries (i, j). Over the 1970−2017 period, the diameter and average

distance of the U.S. production network have a mean of four and two, respectively.7 When

the U.S. economy is categorized into 46 industries, it takes two steps on average for one

industry to reach any other industry within the network, which implies a small world of

production networks. In other words, industries with indirect demand-supply relationships

are highly likely to link through a few star input suppliers as they shorten the distance

between industries.

3.2.2 A Measure of Network Interconnection: Density

Network density measures the degree of inter-industrial connections within a network. In line

with ?, an economy with N industries has a network density of L/N2, where N2 indicates the

number of all possible links, and L is the number of existing links. This measure ranges from 0

to 1, with the lower limit corresponding to an economy with completely isolated sectors, while

the upper limit refers to the network with all possible sectoral interconnections. Moreover,

network density can vary over time, as inter-sectoral linkages might emerge or vanish due to

changes in suppliers’ productivity, international competition, consumers’ preferences, etc.

Figure 2 plots the network density of the United States from 1970 to 2017 with 46

industries. I assume a link exists between industry i and j if i’s supply of good i can account

for at least one percent of j’s total input expenditures. In our analysis, the average network

density is 0.239, implying that 506 out of 2,116 possible linkages8 existed in any given year.

However, even with such a highly disaggregated industry classification, the number of links

varies over time. The network density has a standard deviation of is 0.0086, which is roughly

7The standard deviation of network diameter and distance are 0.03 and 0.4, respectively.
8Since I choose the 46-industry classification in the analysis, the number of all potential links isN2 = 2116.
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Figure 2: Network Density of the U.S. Economy from 1970 to 2017.

Note: Shaded areas refer to the National Bureau of Economic Research (NBER) defined recessions in the
United States.

18 links. Therefore, although the degree of network interconnection has varied over time,

the variation is relatively small.

As shown in Figure 2, network density trended up until early 2000, indicating industries

have become more interconnected during that period, but it started to decline afterward.

One possible reason might lie in the rapid growth of international trade since the 1980s,

especially with Asian countries. The easier accessibility and comparative advantage of pro-

ducing in Asian countries have boosted U.S. firms’ offshoring activities, making them less

connected with domestic trade partners. Moreover, the network density tended to decline

during economic recessions. Intuitively, firms or industries tend to reduce production during

economic downturns and thus become less connected with others.

3.2.3 A Measure of an Industry’s Relative Importance within the Network:

Katz−Bonacich Centrality

The Katz-Bonacich (KB for short) centrality is one way of measuring an industry’s relative

importance as an input supplier in a production network. It takes into account both direct

and indirect (higher-order) connections between industries, as well as the strength of these

connections. In general, industries are considered more central (a higher centrality) if their

neighbors are well-connected industries.

Define the KB centrality Centrality(j) of an industry j as proportional to the weighted
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sum of its neighbors’ centralities, which is given by

Centrality(j) = µ
N∑
i=1

wijCentrality(i) + η,

where N = 46 is the number of industries defined in my sample, and wij corresponds to the

(i, j) element of an empirical input-output matrixW as described in section 3.1, representing

the expenditure on input i per dollar of the production of good j. µ is the baseline centrality

level that is identical across industries, and η > 0 is an attenuation factor. Recall the KB

centrality captures both direct and indirect inter-sectoral connections within the network.

A longer distance, say more than a one-edge distance between industries i and j, will be

penalized through the attenuation factor µ (?). An industry’s centrality can range from 0

to 1 and sum up to one over all industries in a given year. A higher centrality implies this

sector is a more important input supplier in the network and more influential over the entire

economy. For instance, an industry with a centrality of 0.2 has twice as much influence as a

0.1−centrality industry.

Rewriting the previous equation into the matrix form, we have

Ψ = η[I− µW′]
−1
,

where Ψ denotes a N × N industry centrality matrix, and I is the identity matrix. Each

element Ψ = [ψij] measures sector i’s total reliance on its input supplier j, which is propor-

tional to the Leontief inverse elements. Therefore, the centrality of j is computed as the sum

of the jth column Centrrality(j) =
∑N

i=1 ψij. Last, following ?, I set the attenuate factor

µ = 0.5, and η = (1− µ)/N .

Using the above equation, I calculate each industry’s centrality from 1970 to 2017. Figure

3 highlights four industries that increased in centrality over the past fifty years. They are

“Finance and insurance”, “Real estate”, “Professional, scientific, and technical services”, and

“Administrative and waste management services.”9 An industry with increasing centrality

means that many more sectors, directly and indirectly, rely on it for their own production

process. For example, “Professional, scientific, and technical services (yellow line)” (PST

services for short) and “Administrative and waste management services (purple line)” ex-

hibited a more than 50% increase in centrality since 1970. One possible explanation for such

increases is outsourcing. Rather than hiring accountants, statisticians, or cleaning persons

to produce in-house, more firms or industries were increasingly contracting out these jobs

9I choose these four industries as they experienced the largest rise in centrality across all industries over
the sample period.
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Figure 3: Selected Industries that Increased in Centrality.

to specialized companies, thus making them more central over time (?). Imagine the same

adverse shock hitting “PST services” in 1970 and 2010 separately. It will have a more dev-

astating impact on 2010’s economy as “PST services” has become a more influential input

supplier.

On the other hand, “Finance and insurance (blue line)” and “Real estate (red line)” in

Figure 3 present similar periodic patterns throughout the sample, despite their centralities

being different in magnitude. In particular, two sectors experienced a sharp increase in

centrality level from the mid-1990s to 2005, which coincided with the U.S. real estate boom.

The continuous growth in housing demand had boomed financial and real estate-related

services, making the two industries more central in the economy. However, their centralities

started declining around 2007, possibly due to the 2008-2010 financial crisis.

In contrast, Figure 4 depicts four selected industries with no substantial gains in central-

ity. For example, “Primary metal (blue line)” and “Paper products (red line)” experienced

a declining centrality over time.10 Since the 1980s, the U.S. government has started im-

posing stringent environmental regulations on manufacturing industries. As a result, it

largely increased firms’ production costs as old equipment needed to be replaced by new

environment-friendly ones (?). Meanwhile, foreign companies entered the U.S. market with

cheaper imports. Both situations weakened the competitiveness of domestic manufacturers

(?) and thus reduced their centralities. In addition, the centrality of “Oil and gas extraction

(yellow line)” and “Petroleum and coal products (purple line)” peaked in the early 1980s

and late 2000s but maintained a similar level at the beginning and the end of the sample

10In my analysis, the majority of industries that experienced a declining centrality belong to manufacturing.
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Figure 4: Selected Industries that Did Not Increase in Centrality.

Figure 5: Centrality Std.D , 1970−2017.

period.

3.2.4 A Measure of Network Structure: Centrality Dispersion

In this paper, I use centrality dispersion to characterize the production network structure

of the U.S. economy, which is defined as the unweighted cross-sectional standard deviation

of the KB centrality in a given year. This measure is closely related to what ? has found

theoretically, which characterizes how sectoral productivity shocks amplify and propagate

through inter-sectoral linkages and lead to (second-order) aggregate impact. Centrality dis-
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Figure 6: Fitted GEV Distribution of Centrality in Five Selected Years.

persion describes the extent to which an economy contains a group of star intermediate input

suppliers. Thus, a more dispersive production network structure (or a larger standard de-

viation of centrality) implies an economy consisting of a few highly central industries. And

such an economy could be more vulnerable to shocks. Because shocks to a sector, especially

a star supplier, would propagate to more sectors via network linkages, then generate greater

aggregate volatility.

Figure 5 plots the centrality dispersion (the standard deviation of the KB centrality)

spanning 1970 to 2017. The increasing trend in the figure indicates that industry centrality

has spread further from the mean, leaving (both right and left) tails of centrality distribution

fatter over the years. A fatter right tail implies an economy with more central input suppliers.

That is to say, over time, many more industries relied on these star suppliers for their own

production process. Analogously, a heavier left tail suggests that relatively unimportant

industries (or low-centrality industries) have maintained a weak interconnection with most

other industries throughout the sample period. The coexistence of a few highly central

industries and an isolated group of less central industries identifies the U.S. economy as a

gradually sparsely connected production network. Last, in Figure 6, I plot the centrality

distribution11 in 1972, 1982, 1992, 2002, and 2012 to provide a clear vision of how the U.S.

production network structure has changed over time.

In Appendix A, I will provide an alternative measure of production network structure,

concentration centrality, and show its significant correlations with GDP growth and volatility.

11Since I only have 46 centralities each year, I plot the generalized extreme value (GEV) distribution that
best fits the limited data.
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3.3 Input-Output Network Structure and Aggregate Fluctuations

In this subsection, I will show empirical evidence of how input-output network structure

shapes aggregate fluctuations in the United States from 1970 to 2017. In particular, I

examine the conditional correlation between centrality dispersion, the production network

structure measure described in Section 3.2.4, and real GDP growth and growth volatility,

respectively.

3.3.1 Centrality Dispersion and real GDP Growth

First, I estimate the relationship between centrality dispersion, specified as the unweighted

cross-sectional standard deviation of the KB centrality, and aggregate real GDP growth using

the following regression:

∆log(RGDPT ) = β1log(Std.centralityT ) + X̄
′
Tγ1 + ēT (1)

where ∆log(RGDPT ) denotes real GDP growth in year T , measured by the first difference of

annual real GDP in logarithm. The key regressor Std.centralityT stands for centrality disper-

sion, which describes year T ’s network structure. The vector X̄T contains control variables

(in logarithm) used in the literature: service12 sales share in GDP (?), log(Serv./GDPT ),

and intermediate input sales to gross output ratio (?), log(Int.m/outputT ). I also include

log(Int.m/outputT )
2, denoted as the squared input sales ratio, to capture the potential non-

linearity in explaining output growth.

Observation 1 As industries in the U.S. economy become sparsely connected over time,

aggregate real GDP growth tends to slow down.

Table 2 illustrates the results of estimating equation (1), which indicates a strong negative

correlation between centrality dispersion and real GDP growth. As the production network

structure becomes sparser across years, that is, a few highly central supplier industries

combined with an isolated group of less important industries, GDP growth tends to slow

down. To have an idea of the economic significance of the coefficient in the first column

of Table 2, for a one-standard-deviation increase in centrality dispersion, real GDP growth

rate declines by about 0.007 on average. The intuition underlying this negative coefficient is

that, on the one hand, most service-related industries in the United States were becoming

1221 out of 46 industries are selected to be the members of the broad service sector, including Utility,
sixteen private service-producing industries, and four government-related industries.
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Table 2: Real GDP Growth and Centrality Dispersion, 1970−2017.

(1) (2) (3)
Variables ∆log(RGDPT ) ∆log(RGDPT ) ∆log(RGDPT )

log(Std.centralityT ) -0.798*** -0.861*** -0.831***
(0.299) (0.280) (0.300)

log(Int.m/outputT ) -0.423*** -0.703**
(0.156) (0.353)

log(Int.m/outputT )
2 -27.378*** –29.741***

(4.587) (4.321)
log(Serv./GDPT ) -0.663* -0.791*

(0.396) (0.485)
log(HHIT ) 1.772

(2.311)

R-squared 0.157 0.497 0.511
Observations 48 48 48

1 This table presents the OLS regression results, using real GDP growth rate as the
dependent variable. All variables except real GDP growth are HP-filtered with a
smoothing parameter of 6.25.
2 ***p < 0.01, **p < 0.05, *p < 0.1, and robust standard errors are in the paren-
theses.

more central suppliers. However, on the other hand, these service sectors tend to have low

productivity growth to grow over time,13 thus causing an economic slowdown. Also shown

in column (2), results are robust when including the aforementioned control variables.

Last, I add an additional regressor, the Herfindahl-Hirschman index (HHI) of sectoral

sales shares log(HHIT ) (?),
14 and re-estimate the correlation. As shown in column (3), the

relationship between centrality dispersion and real GDP growth holds even after controlling

for the HHI of sectoral sales shares. This result suggests that network structure affects

real GDP growth beyond sectoral sales shares. In other words, sectoral interconnection in

isolation can account for aggregate economic growth. Our empirical evidence complements

?’s theoretical findings that Domar weights (sectoral sales shares) are insufficient statistics for

characterizing the nonlinear impact of sectoral productivity shocks on economic outcomes.

Nevertheless, there is a potential reverse causality problem as aggregate GDP growth

might reversely affect how sectors trade with one another. Regarding this issue, I conduct

the Granger causality test, and the results suggest that reverse causality should not be a

primary concern here.

13In Appendix B.1, I show empirical evidence of a negative correlation between an industry’s centrality
and sectoral real output growth over my sample period, which is similar to ?’s finding.

14For each period T , I calculate HHIT =
√∑N

i=1(
Si,T

GDPT
)2, where Si,T are sector i’s total sales at time T .
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Table 3: Real GDP Growth Volatility and Centrality Dispersion, 1970−2017.

(1) (2) (3)
Variables Growth volatilityT Growth volatilityT Growth volatilityT

log(Std.centralityT ) 0.370** 0.397** 0.440**
(0.200) (0.210) (0.126)

log(Serv./GDPT ) 0.345 0.537**
(0.271) (0.205)

log(Std.domarT ) -0.355
(0.330)

Growth volatilityT−1 -0.319** -0.292** 0.350***
(0.148) (0.132) (0.122)

R-squared 0.176 0.217 0.250
Observations 48 48 48

1 This table presents the coefficients of estimating equation (2), using the standard deviation of
real GDP growth as the dependent variable.
2 All variables have been HP-filtered with a smoothing parameter of 6.25.
3 ***p < 0.01, **p < 0.05, *p < 0.1, and robust standard errors are in the parentheses.

3.3.2 Centrality Dispersion and Growth Volatility

Next, I estimate the relationship between centrality dispersion and macroeconomic volatility

using the equation below:

Growth volatilityT = ρ2Growth volatilityT−1 + β2log(Std.centralityT ) + X̃
′
Tγ2 + ẽT (2)

where Growth volatilityT denotes the standard deviation of real GDP growth at time T ,

as in ? and ?, which is referred to as growth volatility. Std.centralityT still represents

our production network structure measure, which is the centrality dispersion in period T .

Three control variables in X̃ are the one-period lag of growth volatility Growth volatilityT−1,

service sales over GDP ratio log(Serv./GDPT ) and the standard deviation of Domar weights

log(Std.domarT ). Recall that Domar weight is defined as an industry’s total sales to the

economy’s GDP ratio.

Observation 2 As the U.S. input-output network structure becomes sparser over time, ag-

gregate real GDP growth tends to be more volatile.

Table 3 presents the results of estimating equation (2). There is a strong positive cor-

relation between the production network structure and real GDP growth volatility over the

sample period. The coefficient in column (1) indicates that a 1% increase in centrality
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dispersion is associated with a 0.37% increase in aggregate volatility. It also implies that

a one-standard-deviation increase in centrality dispersion rises growth volatility by about

0.004. Intuitively, shocks hitting central supplier industries do not wash out with shocks to

less important industries. Therefore, shocks to a more dispersive network structure will have

a more disproportionate impact on the macroeconomy, thus making it more volatile.

The results are robust when adding previously mentioned control variables. In particu-

lar, I re-estimate the equation conditional on the standard deviation of sectoral sales shares,

log(Std.domarT ), to control for potential variations caused by Domar weights. The signif-

icant coefficient in column (3) suggests that even in the absence of sectoral sales shares,

production network structure is still strongly correlated with aggregate volatility, which

empirically accentuates the role of intersectoral linkages in determining macroeconomic fluc-

tuations.

4 Theoretical Framework

Motivated by the stylized facts, I develop a theoretical framework by embedding intersec-

toral linkages into a multisector real business cycle model with CES technologies, as in ?

and ?. Moreover, I solve the model nonlinearly in order to highlight the role of production

network structure (centrality dispersion) in propagating and amplifying industry-level pro-

ductivity shocks to the macroeconomy. Throughout this section, variables with overlines are

normalizing constants equal to their steady-state values.15

4.1 A Model of Input-Output Networks

Firms’ Productions

In our economy, time is discrete and infinite. There are N = 46 competitive industries. Each

industry i ∈ {1, 2, ..., N} produces a distinct good with a single factor of production (labor)

and an intermediate input bundle within one CES nest. The production function is given by

yit
ȳit

= Ait

[
ait

(
Lit

L̄it

) εY −1

εY

+ (1− ait)

(
Xit

X̄it

) εY −1

εY

] εY
εY −1

(3)

where yit denotes industry i’s output, and Lit is the amount of labor used by i at time T .

Note that an industry’s total output will be sold either to other industries as intermediate

inputs for production or to households as final consumption goods. Xit indicates a bundle of

15Since this paper focuses on percentage changes in GDP, the normalizing constants are irrelevant.
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intermediate inputs purchased from other industries and used for production. The elasticity

of substitution parameter εY measures how easily factors of production (that is, labor and

intermediate inputs) are substituted, and I assume it is identical across industries. Parameter

ait reflects industry i’s usage of labor in the total value of production. Last, I assume that

industry-specific TFP Ait follows a random walk:

logAit = logAit−1 + κit (4)

where sectoral productivity shocks κit are lognormally distributed.

The intermediate input bundle Xit consists of industry i’s purchases of intermediate

inputs from other sectors for production, aggregated through an input-output network:

Xit

X̄it

=

( N∑
j=1

γijt

(
xijt
x̄ijt

) εX−1

εX

) εX
εX−1

(5)

where xijt is the inputs purchased by industry i from its supplier j in year t. The N × N

matrix Γ = [γij] sumerizes the input-output linkages between various industries, and we refer

to as the input-output network structure of the economy. I also assume the constant returns

to scale technology of firms in sector i such that
∑N

j=1 γij = 1. The elasticity of substitution

εX parameterizes the substitutability across intermediate inputs demanded by sector i and

is set to be identical across industries.

Following ?, I allow for two types of labor16 in the model: specific labor lisi,t and general

labor lig,t. Whereas the specific labor can only work in sector i, general labor can move

across sectors flexibly without any transaction cost. Total labor demanded in industry i’s

production Lit is organized as

Lit

L̄it

=
( lisi,t
l̄isi,t

)βi
( lig,t
l̄ig,t

)1−βi , (6)

where the two types of labor are in fixed supplies, such that l̄si,t = l̄isi,t and l̄g,t =
∑N

i=1 l̄ig,t.

Parameter βi denotes the portion of specific labor in total labor used by industry i. As a

result, βi = 1 means the economy only consists of specific labor, which cannot be reallocated

to other sectors, while with βi = 0, all labor can move flexibly within the network.

16? argue that the degree of factor (labor) reallocation can affect sectoral TFP shocks’ impact on the
aggregate economy when characterizing the model nonlinearly.
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Household’s Preferences

The representative household maximizes utility over leisure andN different final consumption

goods (or services)

U(Ct, LSt) = Ct −
εLS

εLS + 1
L

εLS+1

εLS
St (7)

subject to the budget constraint

wtLSt +
N∑
i=1

πit = Pc,tCt (8)

where Ct represents the household’s aggregate consumption bundle at time t, consisting of

different final goods cit and LSt is the total labor supply to all sectors. In the household

budget constraint, wt is wage, πit is the profit in sector i (πit = 0 for each i at the equilibrium),

and Pc,t represents the associated ideal price index of the consumption bundle Ct, assumed

to be a numeraire. The Frisch elasticity of labor supply εLS > 0 describes the sensitivity of

household’s desired labor supply to a given wage rate.

Moreover, the household’s aggregate consumption function is constructed as

Ct

C̄t

=

( N∑
i=1

bi
(cit
c̄it

) εC−1

εC

) εC
εC−1

(9)

where parameter bi illustrates the consumption share of good i, which satisfies
∑N

i=1 bi = 1.

The elasticity of substitution among different consumption goods is denoted as εC .

Competitive Equilibrium

I characterize the competitive equilibrium of our multisector CES economy using the social

planner’s problem. For each industry i, goods market clearing ensures that i’s output is used

for final consumption or intermediate inputs for production: yit = cit +
∑N

j=1 xjit. Recall

that labors are in fixed supplies, so the market-clearing conditions for the specific labor and

the general labor are l̄si,t = lisi,t and l̄g,t =
∑N

i=1 lig,t.

Solution Method

I solve the model nonlinearly in order to characterize the second-order impact of sectoral

TFP shocks on the aggregate economy, as in ? and ?. The advantage of our characterization

is to highlight the key role of inter-sectoral linkages or the network structure in determining

shocks’ effect on aggregate GDP growth and growth volatility. First-order conditions of the
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social planner’s problem is provided in the Appendix C.

4.2 Network Propagation Mechanism

In this subsection, I study the model’s implications for the relationship between the network

structure and GDP growth.

First, the second-order approximation of aggregate real GDP with respect to productivity

shocks to several industries i and j is:

log
Y

Ȳ
≈

N∑
i=1

d logY

d logAi

logAi

+
1

2

N∑
i=1

N∑
j=1

d2 logY

d logAid logAj

(logAilogAj),

(10)

where Y represents aggregate real GDP, and Ȳ denotes the steady-state value of Y . Ai

are industry-specific productivity shocks to industry i. In particular, the first line of equa-

tion (10) shows shocks’ first-order (linear) impact on aggregate GDP, while the second line

captures shocks’ second-order (nonlinear) impact.

Definition 1 Define Γ = [γij] as the N ×N model-implied input-output matrix, the model-

implied centrality matrix is

Φ = η[I− µΓ]−1, (11)

where each element in the centrality matrix Φ = [ϕij] describes sector i’s direct and indirect

reliance on j as an input supplier. Thus, the model-implied centrality of sector j is given by
˜Centrality(j) =

∑N
i=1 ϕij.

Proposition 1 The first-order effect of an industry-specific productivity shock Ai on aggre-

gate GDP is given by
d logY

d logAi

= λi, (12)

where λi =
piyi
GDP

denotes Domar weights, that is, industry i’s total sales to GDP ratio.

Assume that η = µ = 1,17 and the elasticity of substitution of intermediate inputs εX

is common across all industries. I specify the second-order approximation of aggregate real

17When η = µ = 1, the model-implied centrality matrix is essentially the model-implied Leontief inverse
matrix Φ = [I− Γ]

−1
.
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GDP as

log
Y

Ȳ
≈

N∑
i=1

λilogAi

+
1

2
(εX − 1)

N∑
i=1

N∑
j=1

N∑
l=1

λlϕliϕljlogAilogAj

− 1

2
(εX − 1)

N∑
i=1

N∑
j=1

˜Centrality(i) ˜Centrality(j)logAilogAj.

(13)

Proof: See Appendix D.

Proposition 1 generalizes ? and ?’s results by building a connection between centrality

dispersion (our network structure measure) and aggregate GDP. Consistent with Hulton’s

theorem, the first line of equation (13) implies that Domar weights λk, sector k’s sales to

GDP ratio, are sufficient statistics in determining the impact of microeconomic shocks on

GDP up to the first-order approximation.

However, Hulton’s theorem no longer holds when considering shocks’ nonlinear (high-

order) effect. The last two lines of equation (13) exhibits the second-order impact of sector-

level productivity shocks on GDP. On the one hand, when i = j,
∑N

l=1 λlϕ
2
li in the second line

is closely related to our concentration centrality measure, which describes the variation in the

extent to which industry i influences other industries within the network. In other words, how

evenly an industry’s impact is distributed across its consumers within the network. On the

other hand, the last line of equation (13) implies that the variance of industry centrality plays

a key role in determining aggregate GDP. When i = j,
∑N

i=1
˜Centrality

2

(i) is essentially our

empirical network structure measure of centrality dispersion. For example, consider the effect

of a negative productivity shock d logAi < 0 only on sector i. If εX < 1, a greater centrality

dispersion leads to a smaller second-order approximation, and thus a smaller negative impact

on aggregate GDP, ceteris paribus. In other words, a more dispersive network structure itself

would mitigate aggregate GDP growth.

5 Quantitative Applications

In this section, I first calibrate a set of parameters, set the value of elasticities of substitution,

and construct empirical industry-specific TFP shocks from the data. Second, I apply several

quantitative exercises to assess the role of production network structures in shaping GDP

growth and growth volatility. As discussed earlier, the model-simulated results are obtained

by solving the model nonlinearly.
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5.1 Calibration Targets

First, in firms’ production functions, intermediate input shares γij are calibrated so that the

steady-state input cost ratios match the elements in the empirical input-output matrix W.

Then I calibrate labor shares ai to be the value added over gross output ratio by sector. I

assume the two elasticities of substitution in the production function to be common across

industries, respectively.18 Specifically, I set the elasticity of substitution between labor and

intermediates εY = 0.4, as ? estimates its value to range from 0.4 to 0.8. ? also argues that

with a relatively broad industry classification, industries can barely find close substitutes for

inputs in production, so the elasticity of substitution across intermediate inputs εX should

be close to zero. Therefore, I set εX = 0.001 for our model with 46 industries.

Next, I calibrate sectoral expenditure shares bi in the representative household’s consump-

tion function to match the empirical input-output table. I set the elasticity of substitution

across final consumption goods to be εC = 0.9 since the estimated parameter should be

slightly less than one (? and ?). A higher εC implies that the household responds to an

increase in the relative price of a product by substituting away from it. In addition, following

?, I set the Frisch elasticity of labor supply εLS = 2 in the utility function.

Finally, the process of sectoral productivity follows a random walk as in Equation (4). I

specify sectoral TFP shocks κi to be lognormally distributed so that logκi ∼ N(−Σii/2, Σii),

where Σii represents the sample variance of log TFP growth in industry i. In our analysis,

I work with uncorrelated sectoral productivity shocks.19 To calibrate the sample variance

of log TFP growth, I first combine the US KLEMS data compiled by ? and the BEA’s

annual input-output tables with 46 industries from 1970 to 2017. Then I measure sectoral

productivity growth as sectoral Solow residuals following ? and calculate the variance.

5.2 Model-Simulated Regression

In this subsection, I study the quantitative predictions of the model regarding the empir-

ical correlations between the production network structure, real GDP growth, and growth

volatility, as documented in Section 3.3.

To begin with, I simulate the series of sectoral productivities of T = 50 years for the

U.S. economy by S = 300 times. The process for sectoral productivity follows a random

walk as in equation (4), in which shocks κi are independent and lognormally distributed

with logκi ∽ N(−
∑

ii /2,
∑

ii). For each simulation s ⊆ S, I match the initial steady-state

18The estimation of sectoral elasticity of substitution might not be applicable with a level of disaggregation
of 46 industries due to data availability (?).

19? argue that the average correlation between sectoral growth rates is small (less than 5%) with a similar
level of industry disaggregation as in this paper.
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Table 4: Model-implied Real GDP Growth and Centrality Dispersion.

(1) (2) (3)
Data Model Model

Variables (0.9, 0.4, 0.001) (0.999, 0.999, 0.999)

log(Std.centralityT ) -0.861*** -0.181*** 2.770**
(0.280) (0.009) (1.267)

log(Int.m/outputT ) -0.423*** -1.132*** -0.868***
(0.156) (0.030) (0.012)

log(Int.m/output2T ) -27.378*** 5.288*** -3.974***
(4.587) (1.035) (0.260)

log(Serv./GDPT ) -0.142*** -0.889*** -0.001
(0.396) (0.051) (0.006)

Observations 48 15,000 15,000

1 Using ∆log(RGDPT ) as the dependent variable, column (1) presents the empirical
results from Table 2, while column (2) and (3) present the OLS regression results
estimated from the model-simulated variables. All model-implied variables except
real GDP growth have been HP-filtered with a smoothing parameter of 6.25. The
number of observations used in model is computed as T × S.
2 ***p < 0.01, **p < 0.05, *p < 0.1, and robust standard errors are in the paren-
theses.

input-output matrix to the empirical input-output table of 1970, as 1970 is the first year

in the sample. The rest of the parameters are calibrated to match year 1970’s economy.

I also assume workers can flexibly move across industries. Because I simulate the model

economy for 50 years, the full reallocation assumption is considered more appropriate in this

scenario. Next, I feed each productivity process into the model. With the model-implied

path for aggregate real GDP and input-output matrix, I calculate the time series of real GDP

growth, growth volatility, centrality dispersion, as well as other control variables included in

the empirical regressions. Last, I re-estimate the correlation between the model-simulated

input-output network structure, real GDP growth, and growth volatility over S simulations.

The results of re-estimating equation (1) and (2) with model-simulated variables are

shown in the second column of Table 4 and 5, respectively. I include the empirical results

in column (1) in each table for comparison. Overall, with the calibration (εC , εY , εX) =

(0.9, 0.4, 0.001), our model is able to deliver the observed empirical patterns. In particular,

the model predicts a negative relationship between centrality dispersion and real GDP growth

in Table 4, implying that as the production network becomes sparsely connected, GDP

growth tends to slow down. However, the estimated coefficient on centrality dispersion

log(Std.centralityT ) is only about one-quarter as big as observed in the data. On the other
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Table 5: Model-implied Growth Volatility and Centrality Dispersion.

(1) (2) (3)
Data Model Model

Variables (0.9, 0.4, 0.001) (0.999, 0.999, 0.999)

log(Std.centralityT ) 0.397** 0.168*** -7.987***
(0.210) (0.004) (0.792)

log(Serv./GDP T ) 0.345 -0.059** -0.022***
(0.271) (0.003) (0.004)

Growth volatilityT−1 -0.292** -0.345*** -0.301***
(0.132) (0.007) (0.009)

Observations 48 15,000 15,000

1 Using Growth volatilityT as the dependent variable, column (1) presents the
empirical results as in Table 3, while column (2) and (3) present the OLS re-
gression results estimated from the model-simulated variables. All model-implied
variables have been HP-filtered with a smoothing parameter of 6.25. The number
of observations used in model is computed as T × S.
2 ***p < 0.01, **p < 0.05, *p < 0.1, and robust standard errors are in the paren-
theses.

hand, as presented in Table 5, the calibrated model is able to capture the positive correlation

between centrality dispersion and growth volatility as empirically, except that the estimated

coefficient is of an order magnitude smaller, which is 0.168 compared to 0.397. One possible

explanation for the smaller estimated coefficients is that our parsimonious model has inelastic

labor supply and abstracts from capital accumulation. As argued by ?, elastic capital and

labor supply would further amplify TFP shocks.

Finally, in column (3) of Table 4 and 5, I report the model’s implied regression coefficients

for a (near) log-linear Cobb-Douglas economy by setting (εC , εY , εX) = (0.999, 0.999, 0.999).

As Proposition 1 predicts, the Cobb-Douglas model is unable to replicate the empirical facts.

5.3 The Role of Network Linkages in Propagating Shocks

The previous quantitative exercise highlights the crucial role of production network structure

in explaining business cycle fluctuations in the United States over a long time horizon. To

ensure the changes in GDP growth and growth volatility are not purely driven by variations

in industry sizes, I construct two economies with identical Domar weights but different inter-

sectoral linkages to disentangle the contribution of network interconnections. Without loss

of generality, I study a three-sector economy to avoid complexity in the calculation.

In this exercise, I choose year 2002 as the benchmark economy. In particular, I aggregate

the original 46 industries into three broadly defined sectors: Agriculture, Manufacturing, and
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Table 6: Simulated GDP Moments in the Benchmark and Counterfactual Economies.

(εC , εY , εX) Mean Standard Deviation Skewness Ex-Kurtosis

(×104) (×102)

Panel A: No Labor Reallocation

Benchmark Economy -5.68 0.20 -2.52 10.92
(0.9, 0.4, 0.001)

Counterfactual Economy -2.68 0.15 -1.20 3.04
(0.9, 0.4, 0.001)

Benchmark Economy -0.36 0.13 0.01 -0.02
(0.999, 0.999, 0.999)

Counterfactual Economy -0.36 0.13 0.01 -0.02
(0.999, 0.999, 0.999)

Panel B: Full Labor Reallocation

Benchmark Economy 0.22 0.24 0.23 0.03
(0.9, 0.4, 0.001)

Counterfactual Economy 0.07 0.22 0.18 0.01
(0.9, 0.4, 0.001)

Benchmark Economy 0.00 0.00 0.32 0.11
(0.999, 0.999, 0.999)

Counterfactual Economy 0.00 0.00 0.25 0.09
(0.999, 0.999, 0.999)

1 All simulated moments of log GDP are calculated from 80,000 draws.

Service, to construct a new 3 × 3 input-output network. Then I construct a counterfactual

economy where the three industries have identical industry sizes (Domar weights) as the

benchmark one but are connected differently. I shut down the Domar weights channel in

the model, so the only source of variation in GDP fluctuations comes from the change in

production network structures (or network interconnections).

Moreover, I specify two sets of elasticity of substitution parameters in our analysis: one

is the benchmark calibration (εC , εY , εX) = (0.9, 0.4, 0.001), as described in Section 5.1, and

the other is (εC , εY , εX) = (0.999, 0.999, 0.999) to perform a (near) log-linear Cobb-Douglas

model. I also consider two extreme possibilities for the labor market: the case with no labor

reallocation, meaning each labor works for a specific industry and cannot be reallocated,

and the case with full labor reallocation, where labor can move costlessly across industries.

Intuitively, workers cannot move easily across industries within a short time horizon after

shocks, so I assume no reallocation for studying shocks’ short-run impact. Alternatively,

I view the full reallocation assumption as more appropriate to model the long-run impact

of productivity shocks. Last, the rest of the parameters are calibrated to match the two

economies separately.
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Table 6 displays the mean, standard deviation,20 skewness, and excess kurtosis21 of model-

simulated log aggregate GDP under different specifications. The first two rows in each panel

present the results of our CES model with non-unitary elasticities, while the last two rows

illustrate the results of a log-linear Cobb-Douglas model. The moments are calculated from

80,000 draws.22

I start by explaining the simulated moments under no labor reallocation assumption in

Panel A. With non-unitary elasticities (0.9, 0.4, 0.001), all four simulated moments in the

benchmark economy are at least twice as much as those in the counterfactual economy

in magnitude. Loosely speaking, since the only distinction between the two economies is

industry interconnections−ceteris paribus−variations in the simulated GDP moments would

attribute to various network structures. For example, a productivity shock to “Agriculture”

in the benchmark economy causes a greater loss in the mean of log GDP (5.68−2.68 = 3) and

higher volatility (0.20−0.15 = 0.05) than in the counterfactual economy. These quantitative

results are consistent with Proposition 1’s prediction that a more dispersive network structure

itself dampens the negative impact on GDP growth. On the other hand, great skewness and

excess kurtosis imply that the benchmark economy is more vulnerable to adverse shocks.23

In contrast, I set parameters (εC , εY , εX) = (0.999, 0.999, 0.999) to perform a Cobb-

Douglas model and re-calculate GDP moments, listed in the third and fourth rows of Panel

A. As Hulton’s Theorem predicted, simulated results are identical for both economies. This

is to say, up to the first-order approximation, the impact of industry-specific productivity

shocks on aggregate GDP can be entirely captured by the size of industries, meaning network

linkages do not matter. Last, I compare the simulated GDP moments of our benchmark

economy between two sets of parameters (in row one and three). The differences in results,

e.g., 5.68 − 0.36 = 5.32 in the mean, capture shocks’ nonlinear (higher-order) impact on

aggregate output.

A qualitatively similar pattern holds for the model with full labor reallocation assumption,

as shown in Panel B. On the one hand, the simulated moments are different under two labor

market assumptions, which suggests that the degree of labor reallocation could also affect

productivity shocks’ impact on GDP. On the other hand, with full labor reallocation, the

20In the model, the steady-state value of Y/Ȳ equals one, which yields a log value of zero. Therefore, I
calculate the standard deviation of model-implied log (Y/Ȳ ) as the model-implied GDP growth volatility.

21Excess kurtosis refers to the difference between the kurtosis of log GDP and 3, which is the kurtosis of
log GDP distribution against the kurtosis of a normal distribution.

22All exercises are simulated with respect to the same agriculture-specific productivity shock with mean 0
and the variance calibrated from the data.

23Figure 7 in Appendix C.1 shows the distribution of simulated GDP for the benchmark economy and
counterfactual economy. As seen in the figure, the left tail of the aggregate GDP distribution for the
benchmark economy is fatter than that for the counterfactual economy.
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gap in each simulated between the benchmark and counterfactual economies is smaller. For

instance, the reduction in the mean is 0.22 − 0.07 = 0.15, which is less than 3 under the

no-reallocation assumption. Intuitively, given εX = 0.01 < 1, if workers are allowed to

move freely across industries, a negative productivity shock to an industry will trigger a

reallocation of workers towards the hit industry, then mitigate the shock’s adverse effect on

GDP. Unsurprisingly, a Cobb-Douglas model behaves similarly regardless of interconnections.

5.4 The Aggregate Impact of the Covid-19 Crisis

In the last exercise, I study the quantitative impact of the Covid-19 Crisis on the real econ-

omy in our parsimonious model with input-output linkages.24 I assume the Covid-19 shock

is a labor supply shock, meaning it only affects the labor supply in each industry L̄it. There

are practical reasons for this assumption during the Covid-19 pandemic period. It could

be driven by government actions, such as stay-at-home orders, mandated shutdowns, and

reduced seating capacity in inner areas that prevent people from working. It might also be

households’ unwillingness to work due to concerns about their health or unemployment ben-

efits. Although the shock initially hit the labor market, it might affect industries’ production

decisions, then generate macroeconomic fluctuations via inter-sectoral connections.

The labor supply shock is calibrated to match the changes in the number of employees

in each industry in the United States from March 2020 to June 2020. The data comes from

the June 2020 Economic News Release compiled by the U.S. Bureau of Labor Statistics. I

observe that each industry experienced a 9% reduction in employees on average, whereas

“Accommodation” and “Food services and drinking places” lost more than half of their

workers. Moreover, I assume no labor mobility across industries since I am interested in the

shock’s impact on the aggregate economy within a quarter. In response to the labor supply

shocks, our model predicts a reduction of real aggregate GDP by 10.5%, which aligns with

the decline in real GDP in the second quarter of 2020 measured by the BEA. Therefore, this

model does a good job of predicting the aggregate performance of the U.S. economy.

6 Conclusion

This paper argues that the input-output network structure in isolation plays an essential

role in propagating sectoral productivity shocks and shaping aggregate fluctuations in the

U.S. economy from 1970 to 2017. First, I develop a new measure of network structure,

24There are other papers studying economic effects of the Covid-19 crisis on multi-sector Keynesian models
with nominal rigidities, see ?, ? among others.
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named centrality dispersion, to capture the extent to which an economy has a group of star

input suppliers. Then I provide empirical evidence that as the U.S. production network has

become sparsely connected over the years, such that many more industries rely on a few

central input suppliers to produce, leaving the rest of industries more isolated, GDP growth

tended to slow down and be more volatile. Second, I build a multisector real business cycle

model incorporating CES production functions and preferences and inter-industrial linkages

and show that under the nonlinear characterization, production network structure plays a

crucial role in propagating sectoral productivity shocks onto aggregate fluctuations. Finally,

I measure sector-level productivity shocks from the data, feed them into the model, and

study quantitative predictions of the model regarding the empirical correlations between

production network structure, GDP growth, and growth volatility. Overall, the calibrated

model is able to deliver observed empirical patterns reasonably well, while a Cobb-Douglas

model fails to deliver. Our main finding suggests that the U.S. economy has been dominated

by a few central input suppliers, so adverse shocks to the economy, especially these star

industries, will have a more damaging impact on the real economy. As a result, ex-ante

regulations and supportive policies targeting large sectors or corporations, such as the Stress

Test, could be desirable to prevent them from catastrophic failure.

In order to emphasize the role of the production network structure, I have embedded inter-

sectoral linkages into a purposely simple multisector real business cycle model. A natural

next step would be to incorporate the rich set of nominal rigidities and market frictions,

which literature has argued are relevant for shock propagation and amplification within the

network. I also kept the quantitative exercise simple by focusing on sector-level productivity

shocks measured as a simple Solow residual. Another next step would be to incorporate

other shocks and understand what drives variations in the production network structure.
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A Concentration Centrality

A.1 A Measure of an Industry’s Influence across Consumers:

Concentration Centrality

I choose concentration centrality as the second network structure measure in our analysis.

Whereas KB centrality captures an industry’s systematic importance as an input supplier,

concentration centrality describes the variation in the extent to which one industry can in-

fluence the others. In other words, how evenly an industry’s impact is distributed across

its consumers within the network. This measure is theoretically founded by ? and de-

termines the second-order effect of sectoral productivity shocks on an economy’s aggregate

performance, such as GDP growth and volatility.

The concentration centrality of industry i is defined as follows:

Concentration Centrality(i) =
N∑
k=1

λkV arianceW(k)(Ψ(i)),

and

V arianceW(k)(Ψ(i)) =
N∑
l=1

wklψ
2
li −

( N∑
l=1

wklψli

)2
,

where λk denotes sectoral Domar weights, that is, industry k’s sales to GDP ratio. V arianceW(k)(Ψ(i))

measures the variance of the ith column of centrality matrix Ψ, using the kth row of the

empirical input-output matrix W as the distribution. Recall that each element in the cen-

trality matrix Ψ = [ψli] measures sector l’s total reliance on its input supplier i, while

W = [wkl] captures sector k’s input expenditure on good l over its total input expenditures

in production. Intuitively, a smaller variance means that sector i’s influence is more evenly

distributed throughout the economy, thus having a lower concentration centrality. In the

following subsection, I will provide evidence for the relevance of concentration centrality and

an economy’s aggregate performance.

A.2 Concentration Centrality, Growth, and Volatility

In Section 3.3, I show empirical evidence of a significant relationship between centrality

dispersion and real GDP growth and growth volatility, respectively, and highlight the sole

role of network structure in shaping aggregate fluctuations. Next, I will explore the role

of concentration centrality, our second measure of network structure, in shaping economic

outcomes.

33



Table 7: Real GDP Growth and the Concentration Centrality of “Management”, 1970−2017.

(1) (2)
Variables ∆log(RGDPT ) ∆log(RGDPT )

log(Concent.centralityManage,T ) 0.196*** 0.184***
(0.061) (0.048)

log(Int.m/outputT ) -0.217***
(0.156)

log(Serv./GDPT ) -2.108*
(0.396)

R-squared 0.128 0.654
Observations 48 48

1 This table presents the estimated coefficients of the relationship between real
GDP growth and the concentration centrality of “Management of companies
and enterprises”.
2 All variables except real GDP growth are HP-filtered with a smoothing
parameter of 6.25.
3 ***p < 0.01, **p < 0.05, *p < 0.1, and robust standard errors are in the
parentheses.

Table 8: Growth Volatility and the Concentration Centrality of “Retail trade”, 1970−2017.

(1) (2)
Variables Growth volatilityT Growth volatilityT

log(Concent.centralityiT ) -0.080** -0.083**
(0.029) (0.035)

log(Serv./GDPT ) 0.472
(0.374)

Growth volatilityT−1 -0.431*** -0.506**
(0.145) (0.124)

R-squared 0.222 0.297
Observations 48 48

1 This table presents the estimated coefficients of the relationship between real
GDP growth volatility and the concentration centrality of “Retail trade”.
2 All variables have been HP-filtered with a smoothing parameter of 6.25.
3 ***p < 0.01, **p < 0.05, *p < 0.1, and robust standard errors are in the
parentheses.

Observation 3 An industry’s concentration centrality significantly correlates with real GDP

growth and growth volatility.

To achieve this goal, I first regress aggregate real GDP growth on each industry’s con-

centration centrality separately using the following equation:
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∆log(RGDPT ) = β3log(Concent.centralityiT ) + X̄
′
Tγ3 + ēiT (14)

where ∆log(RGDPT ) represents real GDP growth at time T , and Concent.centralityiT is

the concentration centrality of sector i of year T . I add the same control variables25 as in

Section 3.3.1: log of service sales share in GDP, log(Serv./GDPT ), and log of intermediate

input sales to gross output ratio, log(Int.m/outputT ).

Table 7 illustrates the estimated results of the “Management of companies and enterprises

(Management for short)” sector. The positive coefficients (0.196 and 0.184) imply that a

greater concentration centrality of “Management” is associated with faster real GDP growth.

In other words, as the influence of “Management” is more unevenly distributed amongst its

consumers within the network, it accounts for greater aggregate fluctuations. In our analysis,

about half of the 46 industries exhibit a significant relationship between their concentration

centrality and aggregate GDP growth.26

Next, I estimate the conditional relationship between an industry’s concentration cen-

trality and real GDP growth volatility using the equation below:

Growth volatilityT = ρ4Growth volatilityT−1 + β4log(Concent.centralityiT ) + X̃
′
Tγ4 + ẽiT

(15)

where Growth volatilityT denotes growth volatility, which is the standard deviation of real

GDP growth at time T , and the key regressor Concent.centralityiT refers to sector i’s con-

centration centrality in year T . The two control variables in X̃ are one-period lag of growth

volatility, Growth volatilityT−1, and log of service sales over GDP ratio, log(Serv./GDPT ).

Table 8 lists the results of estimating the correlation between growth volatility and the

concentration centrality of “Retail trade” and shows a strong negative correlation between

the two variables throughout the sample period. It implies that GDP growth volatility

decreases as “Retail” affect its customers more unevenly. As our final result, I find that 17

out of the 46 industries defined in this paper reveal such a significant relationship.27

A.3 Model-Simulated Regression

I re-estimate the relationship between model-simulated industry concentration centrality,

GDP growth, and growth volatility as in equation (15) and (16), respectively, and list the

25I did not include the squared input sales ratio in the regression because the corresponding estimated
coefficient is not significant.

26Note that although I obtain a positive estimated coefficient for “Management,” the sign of the estimated
coefficient is not consistent across industries.

27See footnote 28.
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Table 9: Model-implied Real GDP Growth and Concentration Centrality of “Management”.

(1) (2) (3) (4)
Variables Data: ∆log(RGDPT ) Model: Simulated ∆log(RGDPT )

log(Concent.centralityManage,T ) 0.196*** 0.184*** -0.022 0.486***
(0.061) (0.048) (0.029) (0.014)

log(Int.m/outputT ) -0.217*** -1.379***
(0.156) (0.036)

log(Serv./GDPT ) -2.108* -1.087***
(0.396) (0.114)

Observations 48 48 16,500 16,500

1 Column (1) and (2) present the empirical results as in Table 7, while Column (3) and (4) present the
OLS regression results estimated from the model-simulated variables. All model-implied variables except
real GDP growth have been HP-filtered with a smoothing parameter of 6.25. The number of observations
used in model is computed as T × S.
2 ***p < 0.01, **p < 0.05, *p < 0.1, and robust standard errors are in the parentheses.

Table 10: Model-implied Growth Volatility and Concentration Centrality of “Retail trade”.

(1) (2) (3) (4)
Variables Data: Growth volatilityT Model: Simulated Growth volatilityT

log(Concent.centralityiT ) -0.080** -0.083** -0.195*** -0.094***
(0.029) (0.035) (0.055) (0.014)

log(Serv./GDPT ) -0.070 -0.750***
(0.374) (0.272)

Growth volatilityT−1 -0.431*** -0.506** -0.303*** -0.359**
(0.145) (0.124) (0.099) (0.089)

Observations 48 48 16,500 16,500

1 Column (1) and (2) present the empirical results as in Table 8, while Column (3) and (4) present the OLS
regression results estimated from the model-simulated variables. All model-implied variables except real
GDP growth have been HP-filtered with a smoothing parameter of 6.25. The number of observations used
in model is computed as T × S.
2 ***p < 0.01, **p < 0.05, *p < 0.1, and robust standard errors are in the parentheses.

results of “Management” and “Retail trade” in Table 9 and Table 10. In each table, the

model-implied results (in the last two columns) replicate the empirical results (in the first

two columns) reasonably well, especially for the coefficient signs. Broadly speaking, our

model is able to replicate the observed correlation between concentration centrality and GDP

growth for 17 out of 23 industries.28 Meanwhile, it reproduces the empirical concentration

28I observe a significant relationship between concentration centrality and GDP growth for 23 of the 46
industries in the sample.
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Table 11: Sectoral Real Output Growth and Centrality Growth, 1970−2017.

(1) (2) (3)
Variables ∆log(real outputiT ) ∆log(real outputiT ) ∆log(real outputiT )

∆log(centralityiT ) 0.391*** -0.089*** -0.393***
(0.040) (0.031) (0.034)

∆log(real int.miT ) 0.459*** 0.285***
(0.011) (0.014)

∆log(Domar weightiT ) 0.357***
(0.021)

∆log(real outputiT−1) 0.189*** 0.071*** 0.056***
(0.021) (0.016) (0.015)

R-squared 0.081 0.512 0.573
Observations 2116 2116 2116

1 Column (1)-(3) present the results of an OLS regression in first differences.
2 ***p < 0.01, **p < 0.05, *p < 0.1, and robust standard errors are in the parentheses.

centrality−volatility correlations for 10 of the 17 industries with significant estimates.

B Industry’s Centrality and Real Output Growth

In this section, I study the relationship between an industry’s centrality and its real out-

put growth by running the following regression on a panel of 46 industries spanning the

1970−2017 period:

∆log(Real outputiT ) = ρ∆log(Real outputiT−1) + β∆log(CentralityiT ) + ∆log(X′
iT)γ + eiT

(16)

where Real ouputiT represents the real output in sector i at time T , measured as the chain-

type quantity index of sectoral gross output. Therefore, ∆log(Real outputiT ) refers to sec-

toral real output growth. CentralityiT denotes the centrality of industry i in year T . Vector

XiT contains two variables: real intermediate inputs real int.miT used by sector i in year T

and Domar weights29 Domar weightiT . I also include the one-period lag of output growth

in the regression to capture the possibility of persistent changes in output (?).

Observation 4 An industry with a higher centrality tends to have a slower growth rate to

grow over time.

29I include Domar weights in the regression for the same reason specified in Section 3.2.2.
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Table 11 presents the regression results of estimating equation (20), which reveal a sig-

nificant negative correlation between sectoral centrality growth and real output growth. In

other words, as an industry becomes a more central input supplier over the years, i.e., many

more network customers rely on it for their own production process, it tends to have slower

(gross output) growth rate to grow. To understand the economic significance of the result

in column (3), for a one-standard-deviation increase in an industry’s centrality growth, its

real output growth declines by about 0.004.

C First-Order Conditions and Steady-State Values

In this section, I spell out the solution of our model. In particular, I write out the con-

strained maximization problem of a social planner, take first-order conditions, and specify

the conditions that characterize the steady state.

C.1 The Social Planner’s Problem

The Lagrangian is specified as follows:

L = C̄t

( N∑
i=1

bi
(cit
c̄it

) εC−1

εC

) εC
εC−1

− εLS
εLS + 1

L
εLS+1

εLS
St

+
N∑
i=1

pit(yit − cit +
N∑
j=1

xjit)

+
N∑
i=1

wist(l̄is,t − lis,t) + wgt(l̄g,t −
N∑
i=1

lig,t),

(17)

where pit is the Lagrangian multiplier on good i’s market-clearing condition. wst and wgt

represent the Lagrangian multipliers on the specific and general labors, respectively.

Re-stating the expressions

yit = ȳitAit

[
ait

(
Lit

L̄it

) εY −1

εY

+ (1− ait)

(
Xit

X̄it

) εY −1

εY

] εY
εY −1

,

Lit = L̄it

( lisi,t
l̄isi,t

)βi
( lig,t
l̄ig,t

)1−βi ,

Xit = X̄it

( N∑
j=1

γijt

(
xijt
x̄ijt

) εX−1

εX

) εX
εX−1

,
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Ct = C̄t

( N∑
i=1

bi
(cit
c̄it

) εC−1

εC

) εC
εC−1

.

The first-order conditions are:

[cit] : ci = Ct

(
pit
Pc

)−εC

bεCit

(
C̄t

c̄it

)εC−1

. (18)

[xijt] :
pjt
pit

= A
εY −1

εY
it

(
(1− ait)yit

Xit

) 1
εY

(
(1− ait)ȳit

X̄it

)1− 1
εY

(
γijtXit

xijt

) 1
εX

(
γijtX̄it

x̄ijt

)1− 1
εX

.

(19)

[list] : wist = pitȳitAit

(
yit
ȳitAi

) 1
εY

aitβi

(
Lit

L̄it

) εY −1

εY

l−1
ist . (20)

[ligt] : wgt = pitȳitAit

(
yit
ȳitAi

) 1
εY

ait(1− βi)

(
Lit

L̄it

) εY −1

εY

l−1
igt . (21)

Assume the model economy only contains one type of labor li for simplicity and w denotes

the corresponding wage rate. Substituting the first-order conditions into the production

function implies that

pit = A−1
it [aitw

1−εY
t + (1− ait)

( N∑
j=1

γijtp
1−εX
jt

) 1−εY
1−εX

]
1

1−εY . (22)

C.2 Steady-State Values

To obtain the steady-state value of key variables in the first-order conditions, we need to

ensure that the shares of bar variables in equations to be equal to the corresponding long-run

ratios: Pc = 1, Ai = 1, pic̄i/C̄ = bi, qiX̄i/piȳi = 1 − ai, pjx̄ij/piȳi = γij, wL̄i/piȳi = ai.

Towards the goal of solving for the steady-state, I drop time subscripts and re-arrange the

selected first-order conditions of industry i as follows:

xij = (1− ai)γijyipip
−εX
j

( N∑
k=1

γiktp
1−εX
kt

)−1

, (23)

li = aipiyi/w. (24)
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D Proof of Proposition 1

According to equation (18), the envelope theorem implies that

d L
d Ai

= piyi (25)

where L is equivalent to aggregate GDP, Y . Therefore, equation (29) yields

d logY

d logAi

=
piyi
Y

= λi. (26)

Next, recall that the market-clearing condition for good i is given by yi = ci + Σn
j=1xji,

and define gij ≡ pjxij/piyi. Multiplying both sides by pi and dividing by aggregate GDP

implies that

λi = bi +
n∑

k=1

gkiλk, (27)

where λi = piyi/Y is the Domar weight of industry i and bi = pici/Y are consumption shares

in household’s first-order condition. Differentiating both sides of the above equation with

respect to logAj implies that

dλi
dlogAj

=
n∑

k=1

gki
dλk

dlogAj

+
n∑

k=1

λk
dgki
dlogAj

(28)

On the one hand, by Shephard’s lemma, differentiating both sides of equation (23) with

respect to logAk and evaluating it at logA = 0 leads to

d logp̂i
d logAk

= −1(i = k) +
n∑

j=1

γij
d logp̂j
d logAk

(29)

where p̂i ≡ pi/w.

Recall that the model-implied Leontief inverse matrix is Φ = (I − Γ)−1, and Φ = [ϕij]

denotes the element in the matrix, the above equation can be rewritten as

d logp̂i
d logAk

∣∣∣
logA=0

= −ϕik (30)

On the other hand, equation (23) implies that gij = (1−ai)γijyip1−εX
i /

(∑N
k=1 γiktp

1−εX
kt

)
.

Hence, differentiating both sides of this expression, evaluating them at logA = 0, and plug-
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ging the resulting expression back into equation (28) implies that

dλi
dlogAj

=
n∑

k=1

γki
dλk

dlogAj

+
n∑

k=1

(1− εX)γkiλk

(
dlogp̂i
dlogAj

− 1

1− ak

n∑
r=1

γkr
dlogp̂r
dlogAj

)
(31)

Thus, using equation (30), we obtain

dλi
dlogAj

−
n∑

k=1

γki
dλk

dlogAj

=
n∑

k=1

(εX − 1)γkiλk

(
ϕij −

1

1− ak

n∑
r=1

γkrϕij

)
(32)

Multiplying both sides of the above equation by ϕis, summing over all i leads to

d2 logY

d logAid logAj

=
d λi

d logAj

=
N∑
k=1

(εX − 1)λk

( N∑
l=1

γklϕliϕlj −
1

1− ak

N∑
s=1

γksϕsi

N∑
l=1

γklϕlj

)
,

(33)

which implies the second-order effect on aggregate GDP with respect to shocks to sector i

and j. In particular, when i = j,

d2 logY

d logA2
i

=
d λi

d logAi

=
N∑
k=1

(εX − 1)λk

( N∑
l=1

γklϕ
2
li −

1

1− ak
(

N∑
l=1

γklϕli)
2
)
. (34)

Recall that the model-implied centrality of industry j is ˜Centrality(j) =
∑N

i=1 ϕij, thus

˜Centrality(i)
˜Centrality(j) ∝

∑N
s=1 ϕsi

∑N
l=1 ϕlj

∑N
k=1

λk
1− ak

γksγkl. Re-writing equation (33)

leads to

d2 logY

d logAid logAj

≈ (εX − 1)
( N∑

l=1

λlϕliϕlj − ˜Centrality(i) ˜Centrality(j)

)
. (35)

E Simulated GDP Distributions for Application One

In Figure 7, I provide two histograms to visually illustrate model-simulated GDP in the

benchmark (blue bars) and counterfactual (orange bars) economies under different assump-

tions on the labor market.
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Figure 7: Simulated GDP in the Benchmark Economy and the Counterfactual Economy.
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